\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2020

a) Với  \(x\ge0;x\ne1\)

\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(A=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{15\sqrt{x}-11-\left(3x-9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

Vậy : \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b) \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{-5\left(\sqrt{x}+3\right)+17}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)

\(A_{max}\Leftrightarrow\left(\frac{17}{\sqrt{x}+3}\right)_{max}\)

Vì \(x\ge0;x\ne1\Rightarrow\hept{\begin{cases}\sqrt{x}\ge0\\\frac{17}{\sqrt{x}+3}>0\end{cases}A_{max}\Leftrightarrow}\left(\sqrt{x}+3\right)_{min}\Leftrightarrow\sqrt{x}_{min}\Leftrightarrow x=0\)

Vậy : \(A_{max}=\frac{17}{3}\Leftrightarrow x=0\)

c,d chưa làm được .-.

7 tháng 1 2021

c) Để \(A=\frac{1}{2}\)

<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{2}\)

<=> \(-10\sqrt{x}+4=\sqrt{x}+3\)

<=> \(-11\sqrt{x}=-1\)

<=> \(\sqrt{x}=\frac{1}{11}\)

<=> \(x=\frac{1}{121}\left(tm\right)\)

Vậy ...

d) \(A\le\frac{2}{3}\)

<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\le\frac{2}{3}\)

<=> \(\frac{-5\sqrt{x}+2}{\sqrt{x}+3}-\frac{2}{3}\le0\)

<=> \(\frac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\sqrt{x}+9}\le0\)

<=> \(\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)

Vì \(\hept{\begin{cases}-17\sqrt{x}\le0\\3\sqrt{x}+9>0\end{cases}}\) \(\Rightarrow\frac{-17\sqrt{x}}{3\sqrt{x}+9}\le0\)(luôn đúng)

=> Ta có ĐPCM

28 tháng 7 2018

tích mình với

ai tích mình

mình tích lại

thanks

19 tháng 11 2016

1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)

Đạt được khi x = 9

19 tháng 11 2016

2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)

\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)

\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)

Không có GTLN nhé

26 tháng 5 2018

tích đi rồi t làm 

27 tháng 5 2018

9 T I C H  sai buồn

\(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}..\)

nhờ vào năng lực rinegan tối hậu của ta , ta có thể dễ dàng nhìn thấy mẫu chung 

\(x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=\sqrt{x}\left(\sqrt{x}-2\sqrt{xy}\right)+\left(\sqrt{x}-2\sqrt{y}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+1\right)\)

\(A=\frac{\sqrt{x^3}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}-\frac{2x\left(x-1\right)}{\left(\sqrt{x}-2\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}.\)

\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

\(A=\frac{\sqrt{x^3}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\sqrt{x}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\left(\sqrt{x}-2\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x}{\sqrt{y}}\)

b) thay y=625 vào ta được

\(\frac{x}{\sqrt{625}}=\frac{x}{25}< 0.2\Leftrightarrow x< 5\)

vậy   \(0< x< 5\)

4 tháng 6 2018

Ở onlinemath thì đông người thật nhưng không làm được bài khó

=> sang miny nhé bạn , bạn đặt câu hỏi rồi hỏi luôn emkhongnumberone ( thiên tài trong miny )

=> miny ít người nhưng rất hay onl và rất thông minh

13 tháng 8 2018

thằng kia mày nghĩ sao trong onlime math k ai làm đươc bài khó

1 tháng 7 2019

Thuy Duong Nguyen đánh đề cẩn thận hơn bạn nhé

Lời giải :

a) ĐKXĐ : \(x\ne1\)

 \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(A=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}+3\right)\left(2-3\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)

\(\Leftrightarrow\sqrt{x}=\sqrt{2}-1\)

Khi đó \(A=\frac{2-5\left(\sqrt{2}-1\right)}{\sqrt{2}-1+3}\)

\(A=\frac{2-5\sqrt{2}+5}{\sqrt{2}+2}=\frac{7-5\sqrt{2}}{\sqrt{2}+2}\)

c) \(A=\frac{1}{2}\)

\(\Leftrightarrow\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{1}{2}\)

\(\Leftrightarrow2\left(2-5\sqrt{x}\right)=\sqrt{x}+3\)

\(\Leftrightarrow4-10\sqrt{x}-\sqrt{x}-3=0\)

\(\Leftrightarrow1-11\sqrt{x}=0\)

\(\Leftrightarrow11\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x}=\frac{1}{11}\)

\(\Leftrightarrow x=\frac{1}{121}\)( thỏa )

d) A nguyên \(\Leftrightarrow2-5\sqrt{x}⋮\sqrt{x}+3\)

\(\Leftrightarrow-5\left(\sqrt{x}+3\right)+17⋮\sqrt{x}+3\)

Vì \(-5\left(\sqrt{x}+3\right)⋮\sqrt{x}+3\)

\(\Rightarrow17⋮\sqrt{x}+3\)

\(\Rightarrow\sqrt{x}+3\inƯ\left(17\right)=\left\{17\right\}\)( vì \(\sqrt{x}+3\ge3\))

\(\Leftrightarrow\sqrt{x}=14\)

\(\Leftrightarrow x=196\)( thỏa )

Vậy....

\(a,ĐKXĐ:\orbr{\begin{cases}x+2\sqrt{x}+3\ne0\\\sqrt{x}+3\ne0\end{cases}}\)

\(\Leftrightarrow\orbr{ }\sqrt{x}\ne-3\)

Rút gọn: p/s: sau phân số thứ 2 ở mẫu ko có x à? Bạn chép đề sai?