K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

A=1/1*3+1/3*5+1/5*7+.....+1/99*101

A=1/3*(1-1/3+1/3-1/5+1/5-1/7+.......+1/99-1/101)

A=1/3*(1-1/101)

A=1/3*100/101

A=300/301

14 tháng 3 2017
A=1/1.3+1/3.5+1/5.7...+1/99.101 2A=2/1.3+2/3.5+2/5.7+...+2/99.101 2A=(1-1/3)+(1/3-1/5)+...+(1/99-1/101) 2A=1-1/101 A=(1-101):2 A=100/101.1/2 A=100/202 Dấu / thay cho dấu phân số vì mình trả lời trên điện thoại
14 tháng 3 2017

khổ thân cậu bé.bé thế mà khổ

24 tháng 3 2017

sory về hoàn cảnh của bạn. Hu Hu. Tớ giận mình đã ko giúp được bạn.

24 tháng 3 2017

mik chỉ giải được bài 1 với bài 2 thôi!!! 

14 tháng 3 2020

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

\(A=\frac{2^{100}-1}{2^{100}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

hok tốt!!

18 tháng 3 2017

Đáp án đúng là : \(\frac{9}{196}\) nha bạn

18 tháng 3 2017

đáp án là:\(\frac{9}{196}\)

27 tháng 3 2017

1.A= 1.2.3+2.3.4+...+29.30.31+x=15

\(4A=1.2.3.4+2.3.4.\left(5-1\right)+...+29.30.31.\left(32-28\right)+4x=60\)

\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+29.30.31.32-28.29.30.31+4x=60\)

Từ đó suy ra nha bạn

2.\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(=\frac{2}{2\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\\ =1-\frac{2}{\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\frac{2}{x+1}=\frac{2}{2009}\Rightarrow x+1=2009\Rightarrow x=2008\)

15 tháng 4 2016

D = $\frac{2}{3}.\frac{5}{6}.\frac{9}{10}. ... .\frac{799}{780}$

   = $\frac{2.2}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}. ... .\frac{38.41}{39.40}$

   = $\frac{2.2}{2.3}.\frac{2.3. ... .38}{3.4. ... 39}.\frac{5.6. ... .41}{4.5. ... .40}$

   = $\frac{2}{3}.\frac{2}{39}.\frac{41}{4}$

   = $\frac{41}{3.39}$

15 tháng 4 2016

D = \(\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}.....\frac{779}{780}\)

   = \(\frac{2.2}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}.....\frac{38.41}{39.40}\)

   = \(\frac{2}{3}.\frac{2.3.4....38}{3.4.5....39}.\frac{5.6.7.....41}{4.5.6.....40}\)

   = \(\frac{2}{3}.\frac{2}{39}.\frac{41}{4}\)

   = \(\frac{41}{117}\)

27 tháng 6 2017

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+....+\frac{1}{9999}\)

=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)

=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=\(1-\frac{1}{101}=\frac{100}{101}\)

27 tháng 6 2017

tích trước đi đã!!!!!!!!!

19 tháng 3 2018

\(S=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{37.39}\)

=> \(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{37.39}\right)\)

=> \(S=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{39}\right)\)

=> \(S=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{39}\right)=\frac{2}{13}\).

14 tháng 3 2020

Ta có: 

\(4\left(1+5+5^2+...+5^9\right)=5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)

\(=5+5^2+5^3+...+5^{10}-1-5-5^2-...-5^9\)

\(=5^{10}-1+\left(5-5\right)+\left(5^2-5^5\right)+..+\left(5^9-5^9\right)\)

\(=5^{10}-1\)

=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)

Tương tự: \(1+5+5^2+...+5^8=\frac{5^9-1}{4}\)

\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)

\(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)

=> \(A=\frac{5^{10}-1}{5^9-1}>\frac{5^{10}-1}{5^9}=5-\frac{1}{5^9}>4;\)

\(B=\frac{3^{10}-1}{3^9-1}< \frac{3^{10}}{3^9-1}=3+\frac{3}{3^9-1}< 4;\)

=> A > B.