K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}=\frac{2016}{2017}\)

16 tháng 4 2016

S=2-1/1.2  .  3-2/2.3............2016-2015/2015.2016

  =1/1 - 1/2 + 1/2 - 1/3+........+1/2015 - 1/2016

  =1/1 - 1/2016

   =2015/2016

Ta có \(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+\(\frac{1}{3\cdot4}\)+...+\(\frac{1}{2015\cdot2016}\)

     =1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{2015}\)-\(\frac{1}{2016}\)

     =1-\(\frac{1}{2016}\)

     =\(\frac{2015}{2016}\)(bạn cứ nhớ công thức là làm được)

7 tháng 5 2016

Ta thấy: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{2015.2016}=\frac{1}{2015}-\frac{1}{2016}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2015.2016}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{2016}\)

\(=1-\frac{1}{2016}=\frac{2015}{2016}\)

15 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)

\(A=\frac{1}{1}-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

15 tháng 5 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A=1-\frac{1}{2017}\)

\(\Rightarrow A=\frac{2016}{2017}\)

4 tháng 12 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2106}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)

\(A=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)

\(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2014.2016}=\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\right)\)

=> \(B=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{1008}\right)=\frac{1}{4}.\frac{1007}{1008}\)

=> \(B=\frac{1007}{4032}\)

2 tháng 5 2019

A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)

A=\(\frac{1}{1}-\frac{1}{2017}\)

A=\(\frac{2016}{2017}\)

mình quên ghi dấu "=" xin lỗi nhé

17 tháng 10 2019

tuyển gái dâm

27 tháng 8 2017

a) = 1-1/2+1/2-1/3+1/3-1/4

    = 1-1/4=3/4

b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018

   =1-1/2018=2017/2018

c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015

   = 1/2-1/2015=2015/4030-2/4030=2013/4030

27 tháng 8 2017

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)

b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)

\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)

\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}.\frac{2013}{4030}\)

\(=\frac{6039}{8060}\)