Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. \(B=\frac{\sqrt{x}(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{x-\sqrt{x}-x-\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{-2\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}-1)}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}}{1-\sqrt{x}}\)
b. $B=3\Leftrightarrow \frac{\sqrt{x}}{1-\sqrt{x}}=3$
$\Rightarrow \sqrt{x}=3(1-\sqrt{x})$
$\Leftrightarrow 4\sqrt{x}=3\Leftrightarrow x=\frac{9}{16}$ (tm)
c.
Khi $x=3-2\sqrt{2}=(\sqrt{2}-1)^2\Rightarrow \sqrt{x}=\sqrt{2}-1$
Khi đó:
$B=\frac{\sqrt{x}}{1-\sqrt{x}}=\frac{\sqrt{2}-1}{1-(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-\sqrt{2}}$
a: Sửa đề: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\dfrac{2}{x^2-2x+1}\)
\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\cdot\dfrac{1}{2}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)
b: Để P>0 thì \(-\dfrac{\sqrt{x}}{\sqrt{x}-1}>0\)
=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)
=>\(\sqrt{x}< 1\)
=>\(0< =x< 1\)
c: Thay \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) vào P, ta được:
\(P=\dfrac{-\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-1}\)
\(=\dfrac{-\left(2-\sqrt{3}\right)}{2-\sqrt{3}-1}=\dfrac{-2+\sqrt{3}}{1-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{3}-1}{2}\)
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.
Giải
Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)
=> Số học sinh lớp 9B: 90 - x (học sinh)
Số sách và vở lớp 9A quyên góp: 3x (quyển)
Số sách và vở lớp 9B ủng hộ : 2(x-90) (quyển)
Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình
3x + 2(x-90) = 222
\(\Leftrightarrow3x+2x-180=222\)
\(\Leftrightarrow5x=402\)
(đoạn này thì ra lẻ nên e ko tính đc ạ)
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.
Giải
Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)
=> Số học sinh lớp 9B: 90 - x (học sinh)
Số sách và vở lớp 9A quyên góp: 3x (quyển)
Số sách và vở lớp 9B ủng hộ : 2(90-x) (quyển)
Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình
3x + 2(90-x) = 222
=> 3x + 180 - 2x = 222
=> x + 180 = 222
=> x = 42 (tmđk)
Vậy lớp 9A có 42 học sinh
lớp 9B có 90 - 40 = 48 học sinh
ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)
b.
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)
c.
Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)
Ta có:
\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)
a: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{2}{x-1}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}-2+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Khi x=9/4 thì \(P=\dfrac{3}{2}:\left(\dfrac{3}{2}-1\right)=\dfrac{3}{2}:\dfrac{1}{2}=3\)
c: P<0
=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)
=>\(\sqrt{x}-1< 0\)
=>\(\sqrt{x}< 1\)
=>0<=x<1
Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\)
=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2
=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)
thay vào A=\(\dfrac{-2}{3}\)
b)
A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)
Dấu bằng xẩy ra\(\Leftrightarrow\) x=0
chỗ đó cho thêm x-1 nha
đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0
a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Câu 1:
a) ĐKXĐ: \(x>0;x\ne9\)
Với x=36 (thỏa mãn ĐKXĐ) thì A có giá trị :
\(A=\dfrac{\sqrt{36}+2}{1+\sqrt{36}}=\dfrac{6+2}{1+6}=\dfrac{8}{7}\)
b) Ta có:
\(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}=\dfrac{x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
c) Ta có:
\(P=A\cdot B=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)
Vì x là số nguyên lớn hơn 0 nên
\(x\ge1\Rightarrow\sqrt{x}\ge1\Rightarrow\sqrt{x}+1\ge2>0\Rightarrow P\le1+\dfrac{3}{2}=\dfrac{5}{2}\)
Dấu bằng xảy ra khi x=1;
Gọi số sản phẩm dự định của xí nghiệp A và B lần lượt là x,y \(\left(x,y\in N;0< x,y< 720\right)\)
Vì tổng sản phẩm dự định là 720 nên ta có phương trình: \(x+y=720\left(1\right)\)
Vì thực tế , xí nghiệp A hoàn thành vượt mức 12% nên số sản phẩm xí nghiệp A thực tế là : \(112\%x=\dfrac{28}{25}x\)
Xí nghiệp B hoàn thành vượt mức 10% nên số sản phẩm xí nghiệp B thực tế là : \(110\%y=\dfrac{11}{10}y\)
Vì tổng số sản phẩm thực tế là 800 nên ta có phương trình: \(\dfrac{28}{25}x+\dfrac{11}{10}y=800\Leftrightarrow56x+55y=40000\left(2\right)\)
Từ (1)(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=720\\56x+55y=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=720\\55\cdot720+x=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=400\\y=320\end{matrix}\right.\left(t.m\right)\)
Vậy số sản phẩm 2 xí nghiệp làm theo kế hoạch lần lượt là 400 và 320 sản phẩm
\(a,A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\\ b,A< 0\Leftrightarrow\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\left(1>0\right)\\ \Leftrightarrow x< 1\\ c,A\in Z\Leftrightarrow1⋮\sqrt{x}-1\\ \Leftrightarrow\sqrt{x}-1\inƯ\left(1\right)\left\{-1;1\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\\ \Leftrightarrow x\in\left\{0;4\right\}\)
a) \(A=\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+1-4}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-1}\)
b) \(A=\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Kết hợp đk:
\(\Rightarrow0\le x< 1\)
c) \(A=\dfrac{1}{\sqrt{x}-1}\in Z\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0;2\right\}\)
\(\Rightarrow x\in\left\{0;4\right\}\)
a:Thay x=9 vào A, ta được:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)