Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
\(\Rightarrow A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(\frac{2016}{2017}\right)\)
\(\Rightarrow A=\frac{4032}{2017}\)
Ta có:\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+....+\frac{2}{2016\cdot2017}\)
\(=\frac{2}{1}-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+....+\frac{2}{2016}-\frac{2}{2017}\)
\(=\frac{2}{1}-\frac{2}{2017}=2-\frac{2}{2017}=\frac{4034}{2017}-\frac{2}{2017}=\frac{4032}{2017}\)
\(\dfrac{x}{1007}-\dfrac{1}{1.2}-\dfrac{1}{2.3}-\dfrac{1}{3.4}-...-\dfrac{1}{13.14}=\dfrac{15}{14}\)
⇔ \(\dfrac{x}{1007}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{13.14}\right)=\dfrac{15}{14}\)
⇔ \(\dfrac{x}{1007}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{13}-\dfrac{1}{14}\right)=\dfrac{15}{14}\)
⇔ \(\dfrac{x}{1007}-\left(1-\dfrac{1}{14}\right)=\dfrac{15}{14}\)
⇔ \(\dfrac{x}{1007}-\dfrac{13}{14}=\dfrac{15}{14}\)
⇔ \(\dfrac{x}{1007}=\dfrac{15}{14}+\dfrac{13}{14}\)
⇔ \(\dfrac{x}{1007}=\dfrac{28}{14}\)
⇔ \(\dfrac{x}{1007}=2\)
⇔ \(x=2.1007\)
⇔ \(x=2014\)
Vậy \(x=2014\)
\(A=\dfrac{3}{\left(1\cdot2\right)^2}+\dfrac{5}{\left(2\cdot3\right)^2}+\dfrac{7}{\left(3\cdot4\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(A=\dfrac{3}{1\cdot4}+\dfrac{5}{4\cdot9}+\dfrac{7}{9\cdot16}+...+\dfrac{2n+1}{n^2\cdot\left(n^2+2n+1\right)}\)
\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{n^2}-\dfrac{1}{n^2+2n+1}\)
\(A=1-\dfrac{1}{n^2+2n+1}\)
\(A=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)
Đặt: \(\left\{{}\begin{matrix}l_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2005.2006.2007}\\l_2=1.2+2.3+3.4+...+2006.2007\end{matrix}\right.\Leftrightarrow l_1.x=l_2\)
Ta có:
\(l_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2005.2006.2007}\)
\(l_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2005.2006}-\dfrac{1}{2006.2007}\right)\)
\(l_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2006.2007}\right)\)
\(l_2=1.2+2.3+3.4+...+2006.2007\)
\(3l_2=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2006.2007.\left(2008-2005\right)\)
\(3l_2=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2006.2007.2008-2005.2006.2007\)
\(3l_2=2006.2007.2008\Leftrightarrow l_2=\dfrac{2006.2007.2008}{3}\)
Hay: \(\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2006.2007}\right)\right].x=\dfrac{2006.2007.2008}{3}\)
Tới đây thì bấm máy tính là ra :V
Nhã Doanh, ngonhuminh, nguyen thi vang, Hoàng Anh Thư, Mashiro Shiina, Phạm Nguyễn Tất Đạt, F.C, Trần Thị Hồng Ngát, Mến Vũ, kuroba kaito, @Phùng Khánh Linh, Nguyễn Huy Tú, Lightning Farron, Hung nguyen, ...
Bài này đăng nhiều lắm rồi đó bạn: Câu hỏi của Trieu Nguyen - Toán lớp 6 | Học trực tuyến
\(\frac{1}{n^2\left(n+1\right)^2}=\frac{1}{2n+1}.\left[\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\right]\)
\(A_n=\frac{2n+1}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\\ \)
\(A=1-\frac{1}{\left(45\right)^2}\)
\(1,\)
\(a,\) Sửa: \(A=10^n+72n-1⋮81\)
Với \(n=1\Leftrightarrow A=10+72-1=81⋮81\)
Giả sử \(n=k\Leftrightarrow A=10^k+72k-1⋮81\)
Với \(n=k+1\Leftrightarrow A=10^{k+1}+72\left(k+1\right)-1\)
\(A=10^k\cdot10+72k+72-1\\ A=10\left(10^k+72k-1\right)-648k+81\\ A=10\left(10^k+72k-1\right)-81\left(8k-1\right)\)
Ta có \(10^k+72k-1⋮81;81\left(8k-1\right)⋮81\)
Theo pp quy nạp
\(\Rightarrow A⋮81\)
\(b,B=2002^n-138n-1⋮207\)
Với \(n=1\Leftrightarrow B=2002-138-1=1863⋮207\)
Giả sử \(n=k\Leftrightarrow B=2002^k-138k-1⋮207\)
Với \(n=k+1\Leftrightarrow B=2002^{k+1}-138\left(k+1\right)-1\)
\(B=2002\cdot2002^k-138k-138-1\\ B=2002\left(2002^k-138k-1\right)+276138k+1863\\ B=2002\left(2002^k-138k-1\right)+207\left(1334k+1\right)\)
Vì \(2002^k-138k-1⋮207;207\left(1334k+1\right)⋮207\)
Nên theo pp quy nạp \(B⋮207,\forall n\)
\(2,\)
\(a,\) Sửa đề: CMR: \(1\cdot2+2\cdot3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Đặt \(S_n=1\cdot2+2\cdot3+...+n\left(n+1\right)\)
Với \(n=1\Leftrightarrow S_1=1\cdot2=\dfrac{1\cdot2\cdot3}{3}=2\)
Giả sử \(n=k\Leftrightarrow S_k=1\cdot2+2\cdot3+...+k\left(k+1\right)=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}\)
Với \(n=k+1\)
Cần cm \(S_{k+1}=1\cdot2+2\cdot3+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Thật vậy, ta có:
\(\Leftrightarrow S_{k+1}=S_k+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Theo pp quy nạp ta có đpcm
\(b,\) Với \(n=0\Leftrightarrow0^3=\left[\dfrac{0\left(0+1\right)}{2}\right]^2=0\)
Giả sử \(n=k\Leftrightarrow1^3+2^3+...+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)
Với \(n=k+1\)
Cần cm \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Thật vậy, ta có
\(1^3+2^3+...+k^3+\left(k+1\right)^3\\ =\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\\ =\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\\ =\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Theo pp quy nạp ta được đpcm
1- 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/x - 1/x+1 = 99/100
1- 1/x+1= 99/100
1/x+1= 1- 99/100
1/x+1=1/100
=> x+1 = 100
x= 100-1
x=99
Đối với dạng này ta dùng công thức \(a\cdot\left(a+1\right)=\dfrac{1}{3}\left[a\cdot\left(a+1\right)\cdot\left(a+2\right)-\left(a-1\right)\cdot a\cdot\left(a+1\right)\right]\)
Ta có:
\(1\cdot2=\dfrac{1}{3}\left(1\cdot2\cdot3-0\cdot1\cdot2\right)\)
\(2\cdot3=\dfrac{1}{3}\left(2\cdot3\cdot4-1\cdot2\cdot3\right)\)
$\cdots$
\(2016\cdot2017=\dfrac{1}{3}\left(2016\cdot2017\cdot2018-2015\cdot2016\cdot2017\right)\)
Cộng lại ta có: \(1\cdot 2 +2\cdot 3 +3 \cdot 4 +\cdots +2016\cdot 2017=\dfrac{1}{3} (2016\cdot 2017 \cdot 2018-0\cdot 1 \cdot 2)=\dfrac{1}{3}\cdot 2016\cdot 2017 \cdot 2018 \)
Thay vào $A$ thu được $A=672.$
mình thấy hơi dài dòng nhỉ ?