Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{-5}{x+6}\ge0\\ mà\left(-5< 0\right)\\ \Rightarrow x+6< 0\\ \Rightarrow x< -6\\ b,\dfrac{2}{6-x}\ge0\\ mà\left(2>0\right)\\ \Rightarrow6-x>0\\ \Rightarrow x< 6\\ c,\dfrac{-x+3}{-6}\ge0\\ mà-6< 0\\ \Rightarrow-x+3< 0\\ \Rightarrow x>3\\\)
\(d,\dfrac{7x-1}{-9}\ge0\\mà-9< 0\\ \Rightarrow 7x-1\le0\\ \Rightarrow x\le\dfrac{1}{7}\\ e,\dfrac{x+2}{x^2+2x+1}\ge0\\ mà\left(x^2+2x+1\right)>0\forall x\\ \Rightarrow x+2\ge0\\ \Rightarrow x\ge-2\\ f,\dfrac{x-2}{x^2-2x+4}\ge0\\ mà\left(x^2-2x+4\right)>0\forall x\\ \Rightarrow x-2\ge0\\ \Rightarrow x\ge2\)
Chứng minh : \(x^2-2x+4>0\\ x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)
a: ĐKXĐ: \(\dfrac{-5}{x+6}>=0\)
=>x+6<0
=>x<-6
b: ĐKXĐ: (-2)/(6-x)>=0
=>6-x<0
=>x>6
c: ĐKXĐ: (-x+3)/(-6)>=0
=>-x+3<=0
=>-x<=-3
=>x>=3
d: ĐKXĐ: (7x-1)/-9>=0
=>7x-1<=0
=>x<=1/7
e: ĐKXĐ: (x+2)/(x^2+2x+1)>=0
=>x+2>=0
=>x>=-1
f: ĐKXĐ: (x-2)/(x^2-2x+4)>=0
=>x-2>=0
=>x>=2
a: ĐKXĐ: \(x\ge1\)
b: ĐKXĐ: \(x< 0\)
c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)
3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)
4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
5) ĐKXĐ:
+) \(-x^2+6x+16\ge0\)
\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)
\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)
\(\Leftrightarrow-2\le x\le8\)
+) \(3x^2\ne0\Leftrightarrow x\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)
a) a ≠ 1; a ≥ 0
\(\dfrac{a-5\sqrt{a}+4}{a-1}=\dfrac{a-\sqrt{a}-4\sqrt{a}+4}{a-1}=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)-4\left(\sqrt{a}-1\right)}{a-1}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}+1}\)
b) a ≥ 0; \(x\ne\pm\sqrt{3}\)
\(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}=\dfrac{x+\sqrt{3}}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}=\dfrac{1}{x-\sqrt{3}}\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)
Ta có: \(\dfrac{a-5\sqrt{a}+4}{a-1}\)
\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\sqrt{a}-4}{\sqrt{a}+1}\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\sqrt{3}\end{matrix}\right.\)
Ta có: \(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}\)
\(=\dfrac{x+\sqrt{3}}{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
a: ĐKXĐ: x>0; x<>4
\(P=\left(2-\sqrt{x}+2\right)\cdot\dfrac{1}{\sqrt{x}-2}=\dfrac{4-\sqrt{x}}{\sqrt{x}-2}\)
b: P=2/3
=>(4-căn x)/(căn x-2)=2/3
=>2căn x-4=12-3căn x
=>5căn x=16
=>x=256/25
c: Khi x=8-2căn 7 thì \(P=\dfrac{4-\sqrt{7}+1}{\sqrt{7}-1-2}=\dfrac{5-\sqrt{7}}{\sqrt{7}-3}=-4-\sqrt{7}\)
a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\) \(\left(ĐKXĐ:x\ge0\right)\)
\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(\text{}\text{}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)
\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)
c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)
\(\Leftrightarrow x-\sqrt{x}+1>x\)
\(\Leftrightarrow x< 1\)
a: ĐKXĐ: \(x\ge0\)
Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)
__
Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)
\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+6\sqrt{x}-11-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)
a,\(ĐK:x>0,x\ne1,x\ne4\)
\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)
\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)
\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)
\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)
b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)
Thay \(x=1\) vào \(A\), ta được:
\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x-3\ge0\\\sqrt{x-3}-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\\sqrt{x-3}\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\ne7\end{matrix}\right.\)
Vậy ...
ĐKXĐ: \(\left\{{}\begin{matrix}x-3\ge0\\x-3\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\ne7\end{matrix}\right.\)