Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
1/2^2 < 1/1*2
1/3^2 < 1/2*3
1/4^2 < 1/3*4
...
1/100^2 < 1/99*100
=> A < 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100
=> A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
=> A < 1 - 1/100
=> A < 1
minh deo can ban k dau :((
\(a,\frac{1}{2}x+\frac{3}{5}(x-2)=3\)
\(\Rightarrow\frac{1}{2}x+\frac{3}{5}x-\frac{6}{5}=3\)
\(\Rightarrow\left[\frac{1}{2}+\frac{3}{5}\right]x=3+\frac{6}{5}\)
\(\Rightarrow\left[\frac{5}{10}+\frac{6}{10}\right]x=\frac{21}{5}\)
\(\Rightarrow\frac{11}{10}x=\frac{21}{5}\)
\(\Rightarrow x=\frac{21}{5}:\frac{11}{10}=\frac{21}{5}\cdot\frac{10}{11}=\frac{21}{1}\cdot\frac{2}{11}=\frac{42}{11}\)
Vậy x = 42/11
Mình ko bít có đúng ko nên sai đừng trách mình nhé !
\(A=\frac{7^{2011}+1}{7^{2013}+1}\)
\(7^2.A=\frac{7^{2013}+49}{7^{2013}+1}=\frac{7^{2013}+1+48}{7^{2013}+1}=\)\(\frac{7^{2013}+1}{7^{2013}+1}+\frac{48}{7^{2013}+1}=1\frac{48}{7^{2013}+1}\)
\(B=\frac{7^{2013}+1}{7^{2015}+1}\)
\(7^2.B=\)\(=\frac{7^{2015}+49}{7^{2015}+1}=\)\(\frac{7^{2015}+1+48}{7^{2015}+1}=\)\(\frac{7^{2015}+1}{7^{2015}+1}+\frac{48}{7^{2015}+1}=1\frac{48}{7^{2015}+1}\)
\(Vì\) \(1\frac{48}{7^{2013}+1}>1\frac{48}{7^{2013}+1}\)\(\Rightarrow7^2.A>7^2.B\)\(\Rightarrow A>B\)
\(Vậy\) \(A>B\)
Bài 2 nè
ta xét B trước:
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..\)\(.....+\frac{1}{2015}-\frac{1}{2016}\)
=\(\left(\frac{1}{1}+\frac{1}{3}+....+\frac{1}{2015}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{2016}\right)\)
\(=\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}\right)-\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
vậy A:B\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)\(:\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
\(=1\)
Đặt \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)
Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)
=>A<1/2+1/3=5/6<3/2
lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy
k minh nha
1 ) Ta có :
b - a = 1 => b và a là hai số nguyên liên tiếp
MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( - 8 ) và ( - 9 )
Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
2 ) \(\frac{1}{2.y}\)= \(\frac{x}{3}-\frac{1}{6}\)
\(\frac{1}{2y}\)= \(\frac{2x-1}{6}\)
=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z
=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }
Lập bảng giá trị tương ứng giá trị của x , y :
2x - 1 | - 6 | - 3 | - 2 | - 1 | 1 | 2 | 3 | 6 |
x | / | - 1 | / | 0 | 1 | / | 2 | / |
2y | - 1 | - 2 | - 3 | - 6 | 6 | 3 | 2 | 1 |
y | / | - 1 | / | - 3 | 3 | / | 1 | / |
Các bạn ơi câu 2 mik chép đề sai nha:
đề đúng đây
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{a}{b}=\frac{c}{d}\)=\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)
=>\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(3)
=>\(\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(4)
=>Từ (1),(2),(3),(4)=>\(\frac{a}{b}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)
Câu b là = 30/43 nhé, mình quên ko ghi kết quả