K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

a)  \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(A=x^2+2x+y^2-2y-2xy+37\)

\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)

Mà  \(x-y=7\)

\(\Rightarrow A=7^2+2.7+37\)

\(A=100\)

b)  \(B=x^2+4y^2-2x+10+4xy-4y\)

\(B=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(B=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Mà  \(x+2y=5\)

\(\Rightarrow B=5^2-2.5+10\)

\(B=25\)

8 tháng 7 2017

a, Ta có 

A= x(x+2)+y(y-2)-2xy +37

=x2+2x+y2-2y-2xy+37

=x2-2xy+y2+2(x-y)+37

=(x-y)2+2(x-y)+37

Vì x-y=7

=>(x-y)2+2(x-y)+37=72+14+37=100

KL

b, Ta có B=x2+4y2-2x+10+4xy-4y

=x2+4xy+4y2-2x-4y+10

=(x+2y)2-2(x+2y)+10

Vì x+2y=5 

=>(x+2y)2-2(x+2y)+10=52-10+10=25

KL

15 tháng 7 2019

1: a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2.7+37\) (Vì \(x-y=7\))

\(=100\)

Vậy \(A=100\)

b) Ta có: \(B=x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10\)

\(=25\)

Vậy \(B=25\)

c) Ta có : \(C=\left(x-y\right)^2\)

\(=x^2-2xy+y^2\)

\(=\left(x^2+y^2\right)-2xy\)

\(=26-2.5\) (Vì \(x^2+y^2=26\) ; \(xy=5\))

\(=16\)

Vậy \(C=16\)

15 tháng 7 2019

2: a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2\)

\(=x^2+2xy\)

\(=x\left(x+2y\right)\) \(\left(dpcm\right)\)

b) \(\left(x^2+y^2\right)^2-2xy^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x-y\right)^2\left(x+y\right)^2\) \(\left(dpcm\right)\)

c) \(\left(x+y\right)^2=x^2+2xy+y^2\)

\(=\left(x^2-2xy+y^2\right)+4xy\)

\(=\left(x-y\right)^2+4xy\) \(\left(dpcm\right)\)

Chúc bn học tốt ✔✔✔

15 tháng 7 2019

bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải

bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt

\(a.\)

\(x\left(x+z\right)+y\left(y-z\right)-2xy+37\)

\(=x^2+xz+y^2-yz-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+z\left(x-y\right)+37\)

\(=\left(x-y\right)^2+z\left(x-y\right)+37\)

\(=7^2+x.7^2+37\)

\(=86+49x\)

\(b.\)

\(x^2+4y^2-2x+10+4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2.5+10\)

\(=25\)

10 tháng 9 2018

a) Ta có:

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào A

\(A=3^2-4.3+1\)

\(A=9-12+1\)

\(A=-2\)

b) Sửa đề:

\(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(B=x^2+2x+y^2-2y-2xy+37\)

\(B=\left(x^2+y^2+1+2x-2y-2xy\right)+36\)

\(B=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào B

\(B=\left(7+1\right)^2+36\)

\(B=100\)

c) Ta có:

\(C=x^2+4y^2-2x+10+4xy-4y\)

\(C=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(C=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào C

\(C=5^2-2.5+10\)

\(C=25-10+10\)

\(C=25\)

Câu 2: 

\(B=x^2+2x+y^2-2x-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2\cdot7+37=49+37+14=100\)

Câu 3: 

\(C=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2\cdot5+10=25\)

22 tháng 6 2016

Câu hỏi của đỗ thuan - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2021

A=|x2+y2+5+2x-4y|-|-(x+y-1)2|+2xy

<=>A=||(x²+2x+1)+(y²-4y+4)| - (x+y-1)² + 2xy

= |(x+1)²+(y-2)²| - (x+y-1)² + 2xy

= (x+1)²+(y-2)²-(x+y-1)²+2xy

Đặt x+1=a và y-2=b

=> A = a² + b² - (a+b)² + 2(a-1).(b+2)

= a² + b² - a² - 2ab - b² - 2ab + 4a - 2b - 2

= 4a - 2b - 2

= 4(x + 1)-2(y-2)-2

= 4x+4-2y-4-2

= 4x-2y-2

Thay x = 2²⁰¹⁹ và y = 16⁵⁰³ = 2²⁰¹² vào A, ta có:

A = 4.2²⁰¹⁹ - 2.2²⁰¹² - 2

= 2²⁰²¹ - 2²⁰¹³ - 2