Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Có \(\overline{ab}+\overline{ba}=10a+b+10b+a\)
\(=\left(10a+a\right)+\left(10b+b\right)\)
\(=11a+11b\)
\(=11.\left(a+b\right)\)
Ta thấy \(11.\left(a+b\right)⋮11\)
Vậy \(\overline{ab}+\overline{ba}⋮11\left(dpcm\right)\)
a: \(5C=5+5^2+5^3+...+5^{2018}\)
\(\Leftrightarrow4C=5^{2018}-1\)
\(\Leftrightarrow C=\dfrac{5^{2018}-1}{4}\)
\(\Leftrightarrow5^x-1=\dfrac{5^{2018}-1}{4}\)
\(\Leftrightarrow5^x=\dfrac{5^{2018}+3}{4}\)(vô lý)
c: \(64^{10}-32^{11}-16^{13}\)
\(=2^{60}-2^{55}-2^{52}\)
\(=2^{52}\left(2^8-2^3-1\right)\)
\(=2^{52}\cdot247⋮̸49\)
a) -3n + 2 \(⋮\)2n + 1
<=> 2(-3n + 2) \(⋮\)2n + 1
<=> -6n + 4 \(⋮\)2n + 1
<=> -3(2n + 1) + 7 \(⋮\)2n + 1
<=> 7 \(⋮\)2n + 1
<=> 2n + 1 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
2n + 1 | -1 | 1 | -7 | 7 |
n | -1 | 0 | -4 | 3 |
Vậy n = {-1; 0; -4; 3}
b) n2 - 5n +7 \(⋮\)n - 5
<=> n(n - 5) + 7 \(⋮\)n - 5
<=> 7 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
n - 5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n = {4; 6; -2; 12}
c) (3 - x)(xy + 5) = -1
<=> (3 - x) và (xy + 5) \(\in\)Ư(-1)
Ta có: Ư(-1) \(\in\){-1; 1}
Lập bảng:
3 - x | -1 | 1 |
x | -4 | 2 |
xy + 5 | 1 | -1 |
y | 1 | -3 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-4; 1) và (2; -3)
d) xy - 3x = 5
<=> x(y - 3) = 5
<=> x và y - 3 \(\in\)Ư(5)
Ta có: Ư(5) \(\in\){\(\pm\)1; \(\pm\)5}
Lập bảng:
x | -1 | 1 | -5 | 5 |
y-3 | -5 | 5 | -1 | 1 |
y | -2 | 8 | 2 | 4 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-1; -2); (1; 8); (-5; 2) và (5; 4)
e) xy - 2y + x = -5
<=> y(x - 2) + (x - 2) = -7
<=> (x - 2)(y + 1) = -7
<=> (x - 2) và (y + 1) \(\in\)Ư(-7)
Ta có: Ư(-7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
x - 2 | -1 | 1 | -7 | 7 |
x | 1 | 3 | -5 | 9 |
y + 1 | 7 | -7 | 1 | -1 |
y | 6 | -8 | 0 | -2 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (1; 6): (3; -8); (-5; 0) và (9; -2)
a) 3x + 5 : x - 2 = 3 dư 11
Để 3x + 5 chia hết cho x - 2 thì 11 chia hết cho x - 2
=> x - 2 thuộc Ư(11)
=> x - 2 = 1
x - 2 = -1
x - 2 = 11
x - 2 = -11
=> x = 3
x = 1
x = 13
x = -9
b) 6x - 2 : x - 1 = 6 dư 4
Để 6x - 2 chia hết cho x - 1 thì 4 chia hết cho x - 1
=> x - 1 thuộc Ư(4)
=> x - 1 = 1
x - 1 = -1
x - 1 = 2
x - 1 = -2
x - 1 = 4
x - 1 = -4
=> x = 2
x = 0
x = 3
x = -1
x = 5
x = -3
c) -5x + 9 : 2 - x = 5 dư -1
Để -5x + 9 chia hết cho 2 - x thì -1 chia hết cho 2 - x
=> 2 - x thuộc Ư(-1)
=> 2 - x = 1
2 - x = -1
=> x = 1
=> x = 3
d) -10 + 3x : 3 - x = -3 dư -1
Để -10 + 3x chia hết cho 3 - x thì -1 chia hết cho 3 - x
=> 3 - x thuộc Ư(-1)
=> 3 - x = 1
3 - x = -1
=> x = 2
=> x = 4
e) -5x + 12 : 3 + x = -5 dư 27
Để -5x + 12 chia hết cho 3 + x thì 27 chia hết cho 3 + x
=> 3 + x thuộc Ư(27)
=> 3 + x = 1
3 + x = -1
3 + x = 3
3 + x = -3
3 + x = 9
3 + x = -9
3 + x = 27
3 + x = -27
=> x = -2
x = 0
x = -6
x = 6
x = -12
x = 24
x = -30
1, <=> (5n+5) - 1 chia hết cho n+1
<=> 5.(n+1)-1 chia hết cho n+1
<=>-1 chia hết cho n+1 (vì 5.(n+1) chia hết cho n+1)
Đến đó bạn tự giải nha
2, Vì x chia hết cho 11 nên 4x chia hết cho 11 và 7x chia hết cho 11 (1)
Lại có : 4x+21y chia hết cho 11 => 21 y chia hết cho 11 => y chia hết cho 11 [ vì(21;11)=1 ]
<=> 17y chia hết cho 11 (2)
Từ (1);(2) => 7x-17y chia hết cho 11
1/ a) \(x^2-x-1⋮x-1\)
=>\(x.\left(x-1\right)-1⋮x-1\)
=>\(-1⋮x-1\)(vì x.(x-1)\(⋮\)x-1)
=>x-1\(\inƯ\left(-1\right)\)
Đến đay tự làm
b/c/d/e/ tương tự
1.
g/ 2xy chia hết cho 4 và 11.
Để 2xy chia hết cho 4 thì xy chia hết cho 4.
xy c {12 ; 16 ; 20 ; ... ; 96}
- 2xy = 212 không chia hết cho 11.
- 2xy = 216 không chia hết cho 11.
- 2xy = 220 chia hết cho 11.
Vậy, 2xy = 220.
5/
c) a38 chia hết cho 6
6 = 2 . 3
Để a38 chia hết cho 6 thì a38 chia hết cho 2 và 3.
a38 đã thoả mãn điều kiện chia hết cho 2 vì tận cùng của số đó là số 8.
Ta có: a38 = a + 3 + 8 = a + 11 => a c {1 ; 4 ; 7}
Vậy, a38 c {138 ; 438 ; 738}
3. Tìm n thuộc N để
a.27-5n chia hết cho n
do 5n chia hết cho n nên 27 phải chia hết cho n
n thuộc N nên n =1,3,9,27
và 5n< hoặc =27
suy ra n=1 hoặc 3
n=1 thỏa mãn
n=3 thỏa mãn
suy ra 2 nghiệm