K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

Gọi chiều rộng, chiều dài lần lượt là a,b

Theo đề, ta có hệ phương trình:

a=1/4b và a(b+3)=ab+108

=>a=1/4b và 3a=108

=>a=36 và b=144

Gọi độ dài quãng đường là x

Thời gian đi là x/120(h)

Thời gian về là x/90(h)

Theo đề, ta có phương trình:

x/90-x/120=2,5

hay x=900

Gọi độ dài quãng đường là x

Thời gian đi là x/120(h)

Thời gian về là x/90(h)

Theo đề, ta có phương trình:

x/90-x/120=2,5

hay x=900

13 tháng 3 2022

a, Theo định lí Pytago tam giác HBM vuông tại B 

\(HM=\sqrt{BH^2+BM^2}=17cm\)

Ta có \(S_{HBM}=\dfrac{1}{2}.BI.HM;S_{HBM}=\dfrac{1}{2}.BH.BM\)

\(\Rightarrow BI=\dfrac{BH.BM}{HM}=\dfrac{120}{17}cm\)

b, Xét tam giác HIB và tam giác HBM có 

^H _ chung ; ^HIB = ^HBM = 900

Vậy tam giác HIB ~ tam giác HBM (g.g) 

\(\dfrac{HI}{HB}=\dfrac{HB}{HM}\Rightarrow HI=\dfrac{HB^2}{HM}=\dfrac{225}{17}cm\)

c, Xét tam giác MIB và tam giác MBH ta có 

^M _ chung 

^MIB = ^MBH = 900

Vậy tam giác MIB ~ tam giác MBH (g.g) 

\(\dfrac{MB}{MH}=\dfrac{MI}{MB}\Rightarrow MB^2=MI.MH\)

13 tháng 3 2022

Lỗi ảnh r 

???????????????????????????????????????

6 tháng 3 2022

a.Áp dụng định lý pitago vào tam giác vuông PKQ, ta có:

\(QK^2=PQ^2+PK^2\)

\(\Rightarrow QK=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

Áp dụng t/c đường phân giác góc P, ta có:

\(\dfrac{PQ}{PK}=\dfrac{AP}{AK}\)

\(\Leftrightarrow\dfrac{6}{8}=\dfrac{AP}{AK}\) \(\Leftrightarrow\dfrac{3}{4}=\dfrac{AP}{AK}\) \(\Leftrightarrow\dfrac{AK}{4}=\dfrac{AP}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{AK}{4}=\dfrac{AP}{3}=\dfrac{AK+AP}{4+3}=\dfrac{QK}{7}=\dfrac{10}{7}\)

\(\Rightarrow AK=\dfrac{10}{7}.4=\dfrac{40}{7}cm\)

\(\Rightarrow AP=\dfrac{10}{7}.3=\dfrac{30}{7}cm\)

b. Xét tam giác PBQ và tam giác PQK, có:

\(\widehat{PBQ}=\widehat{QPK}=90^0\)

\(\widehat{Q}:chung\)

Vậy tam giác PBQ đồng dạng tam giác PQK ( g.g )

\(\Rightarrow\dfrac{PB}{PK}=\dfrac{PQ}{QK}\)

\(\Leftrightarrow\dfrac{PB}{8}=\dfrac{6}{10}\) \(\Leftrightarrow\dfrac{PB}{8}=\dfrac{3}{5}\)

\(\Leftrightarrow5PB=24\) \(\Leftrightarrow PB=\dfrac{24}{5}cm\)

c. Xét tam giác PBQ và tam giác PBK, có:

\(\widehat{PBQ}=\widehat{PBK}=90^0\)

\(\widehat{PQB}=\widehat{BPK}\) ( cùng phụ với \(\widehat{A}\) )

Vậy tam giác PBQ đồng dạng tam giác PBK ( g.g )

\(\Rightarrow\dfrac{PB}{BK}=\dfrac{QB}{PB}\)

\(\Leftrightarrow PB^2=BK.QB\)