Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
\(a,\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)< x< \left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}\)
\(taco:\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)=\frac{35}{36}\cdot\frac{-36}{35}=-1\)
\(\left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}=\frac{13}{8}\cdot\frac{8}{13}=1\)
\(=>x=0\)
\(b,\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}< x< \frac{-1}{2}+2+\frac{5}{2}\)(dau <co dau gach ngang o duoi nha)
\(taco:\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}=\frac{-5}{6}+\frac{8}{3}+\frac{-29}{3}=\frac{-5}{6}+\frac{16}{6}+\frac{-58}{6}=\frac{-47}{6}=-7,8\)
\(\frac{-1}{2}+2+\frac{5}{2}=\frac{3}{2}+\frac{5}{2}=4\)
tu do \(=>x=-7,8;...;0;1;2;3;4\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế theo vế
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có \(\frac{7}{8}< 1\)
Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
\(\left(\frac{3}{4}.x-\frac{9}{16}\right).\left(\frac{1}{3}+\frac{-3}{5}:x\right)=0\)
<=> \(\hept{\begin{cases}\frac{3}{4}.x-\frac{9}{16}=0\\\frac{1}{3}-\frac{3}{5}.\frac{1}{x}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\\frac{3}{5x}=\frac{1}{3}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{9}{5}\end{cases}}\)
\(\left(x-\frac{1}{3}\right)\left(\frac{2}{5}+x\right)>0\)
<=> \(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\)
<=> \(\hept{\begin{cases}x>\frac{1}{3}\\x>\frac{-2}{5}\end{cases}}\)hoặc \(\hept{\begin{cases}x< \frac{1}{3}\\x< \frac{-2}{5}\end{cases}}\)
<=>\(x>\frac{1}{3}\)hoặc \(x< \frac{-2}{5}\)
câu c tương tự nha
học tốt
b)
\(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(21.\frac{1}{2}\right)\)
\(\Rightarrow\frac{41}{9}:\frac{41}{18}-7< x< \left(\frac{16}{5}:\frac{16}{5}+\frac{9}{2}.\frac{76}{45}\right):\frac{21}{2}\)
\(\Rightarrow2-7< x< \left(1+\frac{38}{5}\right):\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{43}{5}:\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{86}{105}\)
Vì \(x\in Z\left(gt\right)\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0\right\}.\)
Vậy \(x\in\left\{-4;-3;-2;-1;0\right\}.\)