Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có BI=\( \frac{2a}{3}\).nhận thấy góc giữa hai mp(B\(B^,C^,C\)) và đáy là góc giữa hai đường thẳng \(BB^,\) vàAB =30\(^o \)
Xét tam giác \(BB^,I\) vông tại I có:
tan(30)=\(\frac{B^, I}{IB}\)=\(\frac{h}{\frac{2a}{3}}\) →h=\(\frac{2\sqrt{3}a}{9}\) từ đó suy ra thể tích V=h.S=\(\frac{2\sqrt{3}a^3}{9}\)
Bài 1:
Vì \(SH\perp (ABCD)\Rightarrow \angle (SC,(ABCD))=\angle (SC,HC)=\angle SCH\)
\(\Rightarrow \angle SCH=30^0\)
\(\Rightarrow \frac{SH}{HC}=\tan SCH=\frac{\sqrt{3}}{3}\Rightarrow SH=\frac{HC\sqrt{3}}{3}\)
Pitago: \(HC=\sqrt{HB^2+BC^2}=\frac{\sqrt{5}}{2}\)
Do đó \(SH=\frac{\sqrt{15}}{6}\)
\(\Rightarrow V_{S.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{15}}{6}.1^2=\frac{\sqrt{15}}{18}\)
Bài 2:
$S$ cách đều $A.B,C$ nên \(SA=SB=SC\).
Xét chóp $S.ABC$ có độ dài các cạnh bên bằng nhau nên chân đường cao hạ từ đỉnh $S$ xuống đáy chính là tâm ngoại tiếp đáy.
Tam giác $ABC$ vuông tại $B$ nên chân đường cao (H) hạ từ $S$ xuống là trung điểm của $AC$.
Theo định lý Pitago: \(AB=\sqrt{AC^2-BC^2}=\sqrt{3}a\)
\(\Rightarrow S_{ABCD}=AB.AC=\sqrt{3}a^2\)
Có: \(60^0=\angle (SB,(ABCD))=\angle (SB,BH)=\angle SBH\)
\(\frac{SH}{BH}=\tan \angle SBH=\sqrt{3}\Rightarrow SH=BH\sqrt{3}\)
$H$ là trung điểm của $AC$ nên \(BH=AH=HC=\frac{1}{2}AC=a\Rightarrow SH=a\sqrt{3}\)
Vậy \(V_{S.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.\sqrt{3}a^2=a^3\)
\(SA=a\sqrt{2}.\tan45=a\sqrt{2}\)
\(S_{ABCD}=a^2\)
\(V_{S.ABCD}=\dfrac{1}{3}S.ABCD.SA=\dfrac{1}{3}a\sqrt{2}.a^2=\dfrac{a^3\sqrt{2}}{3}\)
khoảng cách từ B đến mặt phẳng(SCD )= k/c từ A đến mp(SCD)
áp dụng pitago cho tam giác SAD \(\Rightarrow\)SD=\(a\sqrt{3}\)
từ A hạ đường thẳngAH vuông góc vs SD
ta có: SA.AD=AH.SD \(\Rightarrow\)AH=\(\dfrac{a\sqrt{2}}{3}\)
vậy khoảng cách từ B đến mp SCD bằng AH
Để giải bài toán này, ta sẽ giải phương trình: ABCD x 4 = DCBA Ta biểu diễn số ABCD dưới dạng 1000A + 100B + 10C + D và số DCBA dưới dạng 1000D + 100C + 10B + A. Vậy phương trình trở thành: 1000A + 100B + 10C + D = 1000D + 100C + 10B + A Chuyển các thành phần về cùng một phía ta được: 999A - 90B - 90C + 999D = 0 999(A - D) - 90(B - C) = 0 Vì A, B, C, D là các chữ số từ 0 đến 9 nên ta có thể thử từng trường hợp để tìm ra kết quả. Dễ dàng thấy rằng A = 2, B = 1, C = 7, D = 8 thỏa mãn phương trình trên. Vậy số ABCD = 2178.