Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Ta có
a + 2b + 3c = 14
=> 2a +4b +6c = 28
Mà a2 + b2 + c2 = 14
Nên a2 + b2 + c2 - 2a - 4b -6c =14 - 28
=> a2 +b2 +c2 -2a -4b - 6c + 14=0
=> (a2 - 2a +1) + (b2 -4b +4 ) + ( c2 - 6c + 9) = 0
=> (a-1)2 + ( b-2 )2 +(c-3)2 =0
=> \(\hept{\begin{cases}a-1=0\\b-2=0\\c-3=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
Vậy abc = 6
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
Dùng máy tính cầm tay bấm Mode/3+1+>+3 để tìm a,b rồi tự thay nhé