K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

Các bạn ơi giúp mk với đc ko 😩🙏

5 tháng 8 2019

 b. \(\left|x-2\right|+3x=1\) (1) 
\(\Leftrightarrow\left|x-2\right|=1-3x\)
Nếu \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
\(pt\left(1\right)\Leftrightarrow x-2=1-3x\)
\(\Leftrightarrow4x=3\Leftrightarrow x=\frac{3}{4}\) (ko TM) 
Nếu: \(x-2< 0\Leftrightarrow x< 2\)
\(pt\left(1\right)\Leftrightarrow x-2=-\left(1-3x\right)\)
\(\Leftrightarrow x-2=-1+3x\)
\(\Leftrightarrow-2x=1\Leftrightarrow x=-\frac{1}{2}\left(TM\right)\)
vậy \(S=\left\{-\frac{1}{2}\right\}\)
 

14 tháng 11 2023

a: \(\left|7-2x\right|+7=2x\)

=>\(\left|2x-7\right|+7=2x\)

=>\(\left|2x-7\right|=2x-7\)

=>2x-7>=0

=>\(x>=\dfrac{7}{2}\)

b: \(\left|1-x\right|=4x+1\)

=>\(\left|x-1\right|=4x+1\)

=>\(\left\{{}\begin{matrix}4x+1>=0\\\left(4x+1\right)^2=\left(x-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1\right)^2-\left(x-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1-x+1\right)\left(4x+1+x-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\5x\left(3x+2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

c: \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|3,2+\dfrac{2}{5}\right|\)

=>\(\left|x-\dfrac{1}{3}\right|=\dfrac{16}{5}+\dfrac{2}{5}-\dfrac{4}{5}=\dfrac{14}{5}\)

=>\(\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{14}{5}\\x-\dfrac{1}{3}=-\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{42+5}{15}=\dfrac{47}{15}\\x=-\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{-42+5}{15}=-\dfrac{37}{15}\end{matrix}\right.\)

d: \(\left|x-7\right|+2x+5=6\)

=>\(\left|x-7\right|=6-2x-5=-2x+1\)

=>\(\left\{{}\begin{matrix}-2x+1>=0\\\left(-2x+1\right)^2=\left(x-7\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1+x-7\right)\left(2x-1-x+7\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(3x-8\right)\left(x+6\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{8}{3}\left(loại\right)\\x=-6\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)

e: 3x-|2x-1|=2

=>|2x-1|=3x-2

=>\(\left\{{}\begin{matrix}3x-2>=0\\\left(3x-2\right)^2=\left(2x-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2\right)^2-\left(2x-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2-2x+1\right)\left(3x-2+2x-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-1\right)\left(5x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x-1=0\\5x-3=0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x=1\left(nhận\right)\\x=\dfrac{3}{5}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

1.

\(M(x)=A(x)-2B(x)+C(x)\)

\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)

\(=5x^4+2x^2-\frac{21}{16}\)

2.

Khi $x=-\sqrt{0,25}=-0,5$ thì:

\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)

3)

$M(x)=0$

$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$

$\Leftrightarrow 80x^4+32x^2-21=0$

$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$

$\Leftrightarrow (4x^2+3)(20x^2-7)=0$

Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$

$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$

Đây chính là giá trị của $x$ để $M(x)=0$

Chọn D

a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)

=>-38x=7

hay x=-7/38

b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)

=>1/2x=0

hay x=0

c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)

=>-29x=15

hay x=-15/29

d: \(\Leftrightarrow x^2+2x-x-3=5\)

\(\Leftrightarrow x^2+x-8=0\)

\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)

e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)

\(\Leftrightarrow-25x^2=4\)

\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)

24 tháng 4 2019

M(x) = -3x+6

Ta có: -3x+6 = 0

           -3x     = -6

              x     = 3

24 tháng 4 2019

cảm ơn bạn nhìu nha!!!

28 tháng 9 2017

Dễ thế mà không làm được

9 tháng 1

Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1

a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)

\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)

\(=-x^4+3x^3+x^2+x+6\)

\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)

\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)

\(=-x^5-2x^4-2x-1\)

b: Bạn ghi lại đề đi bạn

22 tháng 1 2020

a,  x=0,5 hoặc -0,5

b,  

17 tháng 2 2020

hai lớp 6a 6b cùng thu nhặt 1soos giấy vụn bằng nhau lớp 6a có 1 bạn thu được 26g còn lại mỗi ban thu được 11g lớp 6b có 1 bạn thu dược 25g còn lại mỗi bạn thu được 10g tính số học sinh mỗi lớp biết số giấy vụn từ 200g-300g