Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=1^2+2^2+3^2+...+56^2\)
\(A=1.1+2.2+3.3+...+56.56\)
\(A=1\left(2-1\right)+2\left(3-1\right)+...+56\left(57-1\right)\)
\(A=\left(1.2+2.3+3.4+...+56.57\right)-\left(1+2+3+...+56\right)\)
Ta coi vế 1 là B, về 2 là C, ta có:
\(3B=1.2.3+2.3.3+3.4.3+...+56.3\)
\(3B=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+56.57\left(58-55\right)\)
\(3B=1.2.3+2.3.4-2.3.1+3.4.5-3.4.2+...+56.57.58-56.57.55\)
\(3B=56.57.58\)
\(B=61712\)
\(C=\left(56+1\right)+\left(55+2\right)+...+\left(28+29\right)\)
\(C=57+57+57+...+57\)
\(C=57.28\)
\(C=1596\)
\(A=B-C=61712-1596=60116\)
Cho A = 2 + 22 + 23 + ... + 256 . Chứng tỏ rằng A chia hết cho 5.
A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 253 + 254 )
A = 30 + ( 30 . 24 ) + ... + ( 3 . 252 )
A = 30 . ( 1 + 24 + ... + 252 )
Do 30 chia hết cho 5
=> 30 . ( 1 + 24 + ... + 252 ) chia hết cho 5
Vậy A chia hết cho 5
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
Cho A = 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^250
a)Tính 3A
3A = 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^7 + 3^251
b) hơi khó
mình đang nghĩ ạ
a) 52.x = 62 + 82
=> 25 .x = 36 + 64
=> 25.x = 100
=> x = 100 : 25
=> x = 4
b) (22 + 42).x + 24 . 5x = 100
=> (4 + 16).x + 16.5x = 100
=> 20x + 80x = 100
=> 100x = 100
=> x = 100 : 100 = 1
c) 24 : x = 26
=> x = 24 : 26
=> x = 2-2 = 1/4
d) 33x + 23x = 102
=> 27x + 8x = 100
=> 35x = 100
=> x = 100 : 35
=> x = 20/7
a)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+....+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
b)
Tách ra thành 2 tổng :\(D=3+3^3+...+3^{99}\) và \(E=3^2+3^4+...+3^{100}\)
\(3^2D=3^3+3^5+...+3^{101}\)
\(9D-D=\left(3^3+3^5+...+3^{101}\right)-\left(3+3^3+...+3^{99}\right)\)
\(8D=3^{101}-3\Leftrightarrow D=\frac{3^{101}-3}{8}\)
Tương tự \(E=\frac{3^{102}-3^2}{8}\)
Ta có \(D-E=B\)
Do đó \(\frac{3^{101}-3-3^{102}+3^2}{8}\)
Tương tự phần a, b tính được \(C=\frac{5^{202}-1}{24}\)
c,\(C=1+5^2+5^4+5^6+...+5^{200}\)
\(\Rightarrow25C=5^2+5^4+5^6+5^8+...+5^{202}\)
\(\Rightarrow25C-C=24C=\left(5^2+5^4+...+5^{202}\right)-\left(1+5^2+...+5^{200}\right)\)
\(=5^{202}-1\)
\(\Rightarrow C=\frac{5^{202}-1}{24}\)
A = 1 + 2 + 22 + ... + 2100
=> 2A = 2 + 22 + 23 + ... + 2100 + 2101
=> 2A - A = ( 2 + 22 + 23 + ... + 2100 + 2101 ) - ( 1 + 2 + 22 + ... + 2100 )
=> A = 2101 - 1
Đề bài yêu cầu gì?
A=\(2+2^2+2^3+...+2^{56}\)
2.A=\(2^2+2^3+2^4+...+2^{57}\)
2.A-A=\(2^{57}-2\)
A=\(2^{57}+2\)
(SAI THÔI NHÉ)