K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

A = (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)

= 6 + 2².(2 + 2²) + ... + 2⁵⁸.(2 + 2²)

= 6 + 2².6 + ... + 2⁵⁸.6

= 6.(1 + 2² + ... + 2⁵⁸) ⋮ 6

A = (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 6 và A ⋮ 7

23 tháng 8 2023

\(A\) chia hết cho \(7\):

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{58}+\left(1+2+2^4\right)\)

\(A=\left(1+2+2^2\right).\left(2+2^4+2^7+...+2^{58}\right)\)

\(A=7.\left(2+2^4+2^7+...+2^{58}\right)⋮7\)

28 tháng 12 2015

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

28 tháng 12 2015

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4

DD
5 tháng 12 2021

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)\)chia hết cho \(3\).

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)\)chia hết cho \(7\).

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)\)chia hết cho \(15\)

Mà \(\left(15,7\right)=1\)nên \(A\)chia hết cho \(7.15=105\).

7 tháng 12 2022

loading...  loading...    

10 tháng 10 2018

\(A=2+2^2+...+2^{59}+2^{60}\)

\(A=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(A=2\cdot3+...+2^{59}\cdot3\)

\(A=3\cdot\left(2+...+2^{59}\right)⋮3\left(đpcm\right)\)

10 tháng 10 2018

ĐPCM LÀ GÌ VẬY BẠN?

27 tháng 11 2021

A= 2+22+23+...+260 chia hết cho 3

A=(2+22)+...+(259+260)

A=2.(1+2)+...+259.(1+2)

A=2.3+...+259.3 chia hết cho 3

 

A=2+22+23+...+260 chia hết cho 7

A=2.(1+2+4)+...+257(1+2+4)

A=2.7+...+257.7 chia hết cho 7

 

 

bn xem lại đề ở chỗ chia hết cho 5 nhé

27 tháng 12 2016

A = 2 + 22 + 23 + ... + 260 chia hết cho 3

A = ( 2 + 22) + ... + ( 259 + 260 )

A = 2. ( 1 + 2 ) + ... + 259. ( 1 + 2 )

A = 2. 3 + ... + 259 . 3 chia hết cho 3 .

A = 2 + 22 + 2+... + 260 chia hết cho 7 

A = 2.( 1 + 2 + 4 ) + ... + 257 . ( 1 + 2 + 4 )

A = 2.7 + .. + 257 . 7 chia hết cho 7 .

Bạn coi lại phần chứng minh A chia hết cho 105 đi nhé !

Nếu bạn nào thấy đúng , nhớ k cho mình nha !

18 tháng 3 2020

mk nghĩ là không phải chia hết cho 105 đâu

là chia hết cho 15 thì hợp lí hơn

24 tháng 10 2021

A  = 2 + 22 + .... + 260

A = 2(1 + 2) + .... + 259(1 + 2)

A = 2. 3 + .... + 259. 3

=> A chia hết cho 3

Bạn làm tương tự với 7 và 5 :))

7 tháng 11 2021

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????1213?????????????????????

28 tháng 10 2021

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ A=\left(2+1\right)\left(1+2^3+...+2^{59}\right)\\ A=3\left(1+2^3+...+2^{59}\right)⋮3\)