Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
A = 1 + 3 + 3^2 + 3^3 + ... + 3^100
A = ( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + ( 3^6 + 3^7 + 3^8 + 3^9 + 3^10 + 3^11 ) + ... +( 3^89 + 3^90 + 3^91 + 3^92 + 3^93 + 3^94 + 3^95) + ( 3^96 + 3^97 + 3^98 + 3^99 + 3^100 )
A = ( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + 3^6( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + ... + 3^89( 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 ) + ( 3^96 + 3^97 + 3^98 + 3^99 + 3^100 )
A = 364 + 3^6 . 364 + ... + 3^89 . 364 + ( 3^96 + 3^97 + 3^98 + 3^99 + 3^100 )
Chứng minh nốt phần còn lại là xong .
chắc bạn chép sai đầu bài ý a rồi , mình sửa lại nhé
Đặt A=\(2+2^2+2^3+...+2^{100}\)
Tổng A có :(100-1):1+1=100(số hạng)
=>A=\(2+2^2+2^3+...+2^{100}\)
A=\(\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
(có \(\dfrac{100}{5}=20\) nhóm , mỗi nhóm có 5 số hạng)
A=\(2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
A=\(2.31+2^6.31+...+2^{96}.31\)
A=\(31.\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
Sửa đề câu a tí nhé:
Chứng tỏ \(\left(2+2^2+2^3+...+2^{100}\right)\)chia hết cho 31
Giải:
Đặt \(S=\left(2+2^2+2^3+...+2^{100}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)+...+\left(1+2+2^2+2^3+2^4\right).2^{96}\)
\(=2.31+2^6.31+...+2^{96}.31\)
\(=31.\left(2+2^6+...+2^{96}\right)\)
\(\Rightarrow S⋮31\)
A = 1 + 3 + 31 + 32 + ... + 3100
A = (1 + 3) + (31 + 32) + ... + (399 + 3100)
A= 4 + 3.(1 + 3) + ... + 399.(1 + 3)
A = 4 + 3.4 + ... + 399.4
A = 4.(1 + 3 + ... + 399) chia hết cho 4 (đpcm)
Có: A = (1+3) + 3.(1+3) + 3^3.(1+3) + ... + 3^99.(1+3)
A = 4+3.4+3^3.4+ ... +3^99.4
A = (1+3+3^3+ ... +3^99).4
=> Achia hết cho 4
Thanks !!!
Ta có:
\(A=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{99}+3^{100}\right)\)
\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(\Rightarrow A=\left(1+3+...+3^{99}\right)\left(1+3\right)\)
\(\Rightarrow A=Q.4\)
\(\Rightarrow A⋮4\)
Vậy \(A=1+3+3^2+3^3+...+3^{100}⋮4\) (Đpcm)
\(A=1+3+...+3^{100}\)
A có 101 số hạng do vậy nếu ta ghép 2 số hạng ta được
\(A=1+3\left(1+3\right)+...+3^{99}\left(1+3\right)\)như vậy
Vậy A chia cho 4 luôn dư 1
Kết luận đề Sai