K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

không thể không công nhận là đúng

19 tháng 3 2016

3) 
C= (1/2).(3/4).(5/6).....(199/200). 
C= (1.3.5….199)/(2.4.6…200) 

C²= 1².3².5²….199²/(2².4².6²…200²) 
Ta có: k²>k²-1=(k-1)(k+1) nên 2²>1.3; 4²>3.5 … 200²>199.201. 
=> 
C² < 1².3².5²….199²/[(1.3).(3.5).(5.7)…(199.2...‡ 
=1².3².5²….199²/(1.3.3.5.5.7…199.201) 
=1².3².5²….199²/(1.3².5².7²…199².201) 
=1/201 

5 tháng 4 2018

\(A=\frac{1\cdot2+2\cdot3+3\cdot4+...+20\cdot21}{1+2-3-4+5+6-7-8+...+197+198-199-200+201}\)     (1)

đặt \(B=1\cdot2+2\cdot3+3\cdot4+...+20\cdot21\)

\(3B=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+20\cdot21\cdot3\)

\(3B=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+20\cdot21\cdot\left(22-19\right)\)

\(3B=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+20\cdot21\cdot22-19\cdot20\cdot21\)

\(3B=20\cdot21\cdot22\)

\(B=\frac{20\cdot21\cdot22}{3}=3080\)    (2)

đặt \(C=1+2-3-4+5+6-7-8+...+197+197-199-200+201\)

\(C=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(197+198-199-200\right)+201\)

\(C=-4+\left(-4\right)+...+\left(-4\right)+201\)   có 50 số -4

\(C=-4\cdot50+201\)

\(C=-200+201\)

\(C=1\)    (3)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow A=\frac{B}{C}=\frac{30801}{1}=3080\)

5 tháng 4 2018

Còn nhớ Zoro ko ? 

10 tháng 1 2016

Đề bài của bạn ​SAI rồi.

28 tháng 2 2017

Ta có \(k^2>k^2-1=\left(k+1\right)\left(k-1\right)\)

Áp dung vào bài toán ta được

\(A=\frac{1}{2}.\frac{3}{4}...\frac{199}{200}=\frac{1.3...199}{2.4...200}\)

\(\Rightarrow A^2=\frac{1^2.3^2...199^2}{2^2.4^2...200^2}< \frac{1^2.3^2...199^2}{1.3.3.5...199.201}=\frac{1^2.3^2...199^2}{1.3^2.5^2...199^2.201}=\frac{1}{201}\)

Vậy \(A^2< \frac{1}{201}\)

28 tháng 2 2017

A2<\(\frac{1}{201}\)

1 tháng 1 2018

ta có 1/2<2/3 ; 3/4<4/5;5/6<6/7;...;199/200<200/201

suy ra A^2=1/2^2*3/4^2*5/6^2*...*199/200^2<1/2*2/3*3/4*4/5*5/6*6/7*...*199/200/200/201

suy ra A^2<1/201(đpcm)

2 tháng 3 2018

Ta có:

\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)

\(\Rightarrow A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)

\(\Rightarrow A^2< \left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\right)\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}\right)\)

\(\Rightarrow A^2< \frac{1}{201}\left(đpcm\right)\)