K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2021

Đặt S = \(\frac{1}{6}+\frac{1}{6^2}+\frac{1}{6^3}+...+\frac{1}{6^{100}}\)

=> 6S = \(1+\frac{1}{6}+\frac{1}{6^2}+...+\frac{1}{6^{99}}\)

=> 6S - S = \(\left(1+\frac{1}{6}+\frac{1}{6^2}+\frac{1}{6^3}+...+\frac{1}{6^{99}}\right)-\left(\frac{1}{6}+\frac{1}{6^2}+\frac{1}{6^3}+...+\frac{1}{6^{100}}\right)\)

=> \(5S=1-\frac{1}{6^{100}}\)

=> \(S=\frac{1-\frac{1}{6^{100}}}{5}\)

Khi đó A = \(\left(1-\frac{1}{6^{100}}\right):\left(\frac{1-\frac{1}{6^{100}}}{5}\right)=5\)

9 tháng 7 2021

Đặt S = \(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\)

=> 72S = 49S = \(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\)

=> 49S - S = \(\left(1+\frac{1}{7^2}+\frac{1}{7^4}+...+\frac{1}{7^{98}}\right)-\left(\frac{1}{7^2}+\frac{1}{7^4}+\frac{1}{7^6}+...+\frac{1}{7^{100}}\right)\)

=> 48S = \(1-\frac{1}{7^{100}}\)

=> \(S=\frac{1-\frac{1}{7^{100}}}{48}\)

Khi đó A = \(\left(\frac{1-\frac{1}{7^{100}}}{48}\right):\left(1-\frac{1}{7^{100}}\right)=\frac{1}{48}\)

14 tháng 7 2021

khong biet

\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)

\(\Rightarrow-\frac{13}{3}.\left(\frac{3}{6}-\frac{1}{6}\right)\le x\le-\frac{2}{3}.\left(\frac{4}{12}-\frac{6}{12}-\frac{9}{12}\right)\)

\(\Rightarrow-\frac{13}{3}.\frac{2}{6}\le x\le-\frac{2}{3}.\frac{-11}{12}\)

\(\Rightarrow\frac{-13}{9}\le x\le\frac{11}{18}\)

\(\Rightarrow\frac{-26}{18}\le x\le\frac{11}{18}\)

=> -1,44444444444........... ≤ x ≤ 0,6111111111...........

Mà x ∈ Z

=> x ∈ { -1 ; 0 }

14 tháng 7 2021

\(x\in\varnothing\) 

Ta có :

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

\(..............\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\left(1\right)\)

Lại có :

\(\frac{1}{5^2}< \frac{1}{4.5}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(...............\)

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(2\right)\)

Từ (1) và (2) => Điều phải chứng minh

7 tháng 3 2017

\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)

\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)

\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)

\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)

7 tháng 3 2017

101/12 bạn nha

CHÚC BẠN HỌC GIỎI

Đặt \(A=\frac{1}{5}+\frac{1}{5^3}+...+\frac{1}{5^{101}}\)

\(\Rightarrow25A=5+\frac{1}{5}+\frac{1}{5^3}+...+\frac{1}{5^{99}}\)

\(\Rightarrow25A-A=\left(5+\frac{1}{5}+\frac{1}{5^3}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^3}+\frac{1}{5^5}+...+\frac{1}{5^{101}}\right)\)

hay \(24A=5-\frac{1}{5^{101}}\)

\(\Rightarrow A=\frac{5-\frac{1}{5^{101}}}{24}\)

\(\Rightarrow A:\left(1-\frac{1}{5^{102}}\right)=\frac{5-\frac{1}{5^{101}}}{24}.\frac{1}{1-\frac{1}{5^{102}}}\)

\(=\frac{5\left(1-\frac{1}{5^{102}}\right)}{24}.\frac{1}{1-\frac{1}{5^{102}}}=\frac{5}{24}\)

9 tháng 7 2021

Đặt S = \(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\)

=> 24S = 16S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}\)

=> 16S - S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}-\left(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\right)\)

=> 15S = \(2^3-\frac{1}{2^{101}}\)

=> S = \(\frac{2^3-\frac{1}{2^{101}}}{15}\)

Khi đó A = \(\frac{2^3-\frac{1}{2^{101}}}{15}:\left(2^3-\frac{1}{2^{101}}\right)=\frac{1}{15}\)

9 tháng 7 2021

kết bạn đi toán lớp mấy vậy