K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

a, \(\left(x+\frac{4}{3}y^2\right)^2\)

\(=x^2+\frac{8}{3}xy^2+\frac{16}{9}y^4\)

b, \(\left(2x-3y\right)^2\)

\(=4x^2-12xy+9y^2\)

c, \(\left(x^2+2x\right)\left(2x-x^2\right)\)

\(=\left(2x+x^2\right)\left(2x-x^2\right)\)

\(=4x^2-x^4\)

d, \(\left(x+\frac{1}{2}\right)^3\)

\(=x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

e, \(\left(2x-\frac{6}{5}y\right)^3\)

\(=8x^3-\frac{72}{5}x^2y+\frac{216}{25}xy^2-\frac{216}{125}y^3\)

25 tháng 9 2020

Rút gọn hả bạn ?

( 3x - 1 )2 - 9( x - 1 )( x + 1 )

= 9x2 - 6x + 1 - 9( x2 - 1 )

= 9x2 - 6x + 1 - 9x2 + 9

= 10 - 6x

( 2x + 3 )( 2x - 3 ) - ( 2x - 1 )2 - ( x - 1 )

= 4x2 - 9 - ( 4x2 - 4x + 1 ) - x + 1

= 4x2 - x - 8 - 4x2 + 4x - 1

= 3x - 9

2( x - 2y )( x + 2y ) + ( x - 2y )2 + ( x + 2y )2

= [ ( x + 2y ) + ( x - 2y ) ]2

= [ x + 2y + x - 2y ]2

= ( 2x )2 = 4x2

2 tháng 8 2018

(x + 2)(x - 2) - (x - 2)(x + 5)

= (x - 2)(x + 2 - x - 5)

= (x - 2)-3

= -3x + 6

b) 2x(3x2y + 4x2y - 3)

= 2x(7x2y - 3)

= 14x3y - 6x

2 tháng 8 2018

bạn giải hết đc ko ạ

3 tháng 8 2018

a) (x+2)(x-2) - (x-2)(x+5 )

= (x-2) (x+2 - x-5)

= -3 (x-2)

c) \(\left(3x+1\right)^2\) - \(\left(1-2x\right)^2\)

= (3x+1 - 1 +2x) (3x+1 +1-2x)

= 5x (x +2)

d) \(x^2\) - 4 - \(\left(x+2\right)^2\)

= (\(x^2\) - 4 ) - ( x+2) (x+2)

= (x-2) (x+2) - (x+2) (x+2)

= (x+2) (x-2 - x-2)

= -4 (x+2)

e: \(=x^2-16-2x^2-6x+x^2+6x+9=-7\)

b: \(=\left(6x+1-6x+1\right)^2=2^2=4\)

NM
19 tháng 9 2021

ta có :

\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1+x-1\right)\left(2x+1-x+1\right)=3x\left(x+2\right)\)

\(a)\)

\(21\left(x+3\right)^3:\left(3x+9\right)^2\)

\(=[21\left(x+3\right)^3]:[3^2\left(x+3\right)^2]\)

\(=7\left(x+3\right):3\)

Thay vào ta được: \(7.\frac{\left(-6+3\right)}{3}=7.\left(-3\right):3=-7\)

\(b)\)

Thay vào ta được:

\(\left(2.2^2-5.2+3\right)^4:[\left(2.2-3\right)^3:\left(2-1\right)^2]\)

\(=\left(2.4-10+3\right)^4:[\left(4-3\right)^31^2]\)

\(=1^4:\left(1^3.1\right)\)

\(=1:1\)

\(=1\)

\(c)\)

Thay vào ta được:

\(36.10^4.7^3:\left(-6.10^3.7^2\right)\)

\(=-6.10.7\)

\(=-420\)

21 tháng 9 2020

a) 2( x - 1 )2 - 4( 3 + x )2 + 2x( x - 5 )

= 2( x2 - 2x + 1 ) - 4( 9 + 6x + x2 ) + 2x2 - 10x

= 2x2 - 4x + 2 - 36 - 24x - 4x2 + 2x2 - 10x

= ( 2x2 - 4x2 + 2x2 ) + ( -4x - 24x - 10x ) + ( 2 - 36 )

= -38x - 34

b) 2( 2x + 5 )2 - 3( 4x + 1 )( 1 - 4x )

= 2( 4x2 + 20x + 25 ) + 3( 4x + 1 )( 4x - 1 )

= 8x2 + 40x + 50 + 3( 16x2 - 1 )

= 8x2 + 40x + 50 + 48x2 - 3

= 56x2 + 40x + 47

c) ( x - 1 )3 - x( x - 3 )2 + 1

= x3 - 3x2 + 3x - 1 - x( x2 - 6x + 9 ) + 1

= x3 - 3x2 + 3x - x3 + 6x2 - 9x

= 3x2 - 6x

d) ( x + 2 )3 - x2( x + 6 ) 

= x3 + 6x2 + 12x + 8 - x3 - 6x2

= 12x + 8

e) ( x - 2 )( x + 2 ) - ( x + 1 )3 - 2x( x - 1 )2

= x2 - 4 - ( x3 + 3x2 + 3x + 1 ) - 2x( x2 - 2x + 1 )

= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x

= -3x3 + 2x2 - 5x - 5 

f) ( a + b - c )2 - ( b - c )2 - 2a( b - c )

= [ ( a + b ) - c ]2 - ( b2 - 2bc + c2 ) - 2ab + 2ac

= [ ( a + b )2 - 2( a + b )c + c2 ] - b2 + 2bc - c2 - 2ab + 2ac

= a2 + 2ab + b2 - 2ac - 2bc + c2 - b2 + 2bc - c2 - 2ab + 2ac

= a2

21 tháng 9 2020

a) \(2\left(x-1\right)^2-4\left(3+x\right)^2+2x\left(x-5\right)\)

Dùng hẳng đẳng thức thứ nhất + hai :

\(2\left(x^2-2\cdot x\cdot1+1^2\right)-4\left(3^2+2\cdot3\cdot x+x^2\right)+2x^2-10x\)

\(2\left(x^2-2x+1\right)-4\left(9+6x+x^2\right)+2x^2-10x\)

\(2x^2-4x+2-36-24x-4x^2+2x^2-10x\)

\(-38x-34\)

b) 2(2x + 5)2 - 3(4x + 1)(1 - 4x)

Dùng đẳng thức thứ 1 + 3

= 2[(2x)2 + 2.2x.5 + 52 ] - (-3)[(4x)2 - 12 ]

= 2(4x2 + 20x + 25) - (-3).(16x2 - 1)

= 8x2 + 40x + 50 - (3 - 48x2)

= 8x2 + 40x + 50 - 3 + 48x2

= 56x2 + 40x + 47

c) (x - 1)3 - x(x - 3)2 + 1

Dùng đẳng thức 2 + 5:

= x3 - 3.x2.1 + 3.x.12 - 13 - x(x2 - 2.x.3 + 32) + 1

= x3 - 3x2 + 3x - 1 - x3 + 6x2 - 9x + 1

= (x3 - x3) + (-3x2 + 6x2) + (3x - 9x) + (-1 + 1)

= 3x2 - 6x

d) (x + 2)3 - x2(x + 6)

= x3 + 3.x2.2 + 3.x.22 + 23 - x3 - 6x2

= x3 + 6x2 + 12x + 8 - x3 - 6x2

= (x3 - x3) + (6x2 - 6x2) + 12x + 8 = 12x + 8

e) Dùng đẳng thức thứ 3,4 và 2

= x2 - 4 - (x3 + 3.x2.1 + 3.x.12 + 13) - 2x(x2 - 2.x.1 + 12)

= x2 - 4 - (x3 + 3x2 + 3x + 1) - 2x3 + 4x2 - 2x

= x2 - 4 - x3 - 3x2 - 3x - 1 - 2x3 + 4x2 - 2x

= (x2 - 3x2 + 4x2) + (-4 - 1) + (-x3 - 2x3) + (-3x - 2x)

= 2x2 - 5 - 3x3 - 5x

f) Đặt \(a+b-c=A\)

\(b-c=B\)

\(A^2-B^2-2AB\)

\(A^2-2AB+\left(-B\right)^2\)

\(=A^2-2AB+B^2\)

= (A - B)2

= (a + b - c - (b - c))2

= (a + b - c - b + c)2

= a2