Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Áp dụng tính chất phân phối ta được:
\(\left(x+1\right)\left(x+2\right)\)
\(=x^2+x+2x+2\)
\(=x^2+2x+1^2+x+1\)
\(=\left(x+1\right)^2+x+1\)
Mà \(x< \left(x+1\right)^2\)
\(\Rightarrow\left(x+1\right)^2+x+1>0\)
=> Biểu thức trên lớn hơn 0
=> Không có kết quả (Sai đề)
b/ Áp dụng tính chất phân phối ta được:
\(\left(x-2\right)\left(x+\frac{2}{3}\right)\)
\(=x^2-2x+\frac{2}{3}x-\frac{4}{3}\)
\(=x^2-2x+1+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{1}{3}\left(2x-1\right)\)
Mà \(\left(x-1\right)^2\ge0\)
=> Để thỏa mãn đề bài cần \(\frac{1}{3}\left(2x-1\right)>0\)
=> \(2x>1\Rightarrow x>\frac{1}{2}\)
a ) \(\left(x+1\right).\left(x+2\right)< 0\)
\(=x.\left(x+2\right)+1.\left(x+2\right)< 0\)
\(=x.\left(x-2\right)+\left(x+2\right)< 0\)
\(\Rightarrow x\in Z\)
\(\Rightarrow x>2\)
a)
\(A=3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)\(2A=\left[\left(x-y\right)-\left(x+y\right)\right]^2+5\left(x-y\right)^2-5\left(x+y\right)^2\)
\(2A=4y^2+5\left[\left(x-y\right)-\left(x+y\right)\right]\left[\left(x-y\right)+\left(x+y\right)\right]\)\(2A=4y^2+5\left[-2y\right]\left[2x\right]=4y^2-20xy=4y\left(y-5x\right)\\ \)\(A=2y\left(y-5x\right)\)
Cái này mình không biết cách trình bày
Nhưng mình nghĩ cách giải sẽ như này: Đầu tiên bạn tìm x trước rồi thay vào pt trong A để tìm m
Đề thiếu. Em bổ sung cho đủ
r ạ