K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2018

 Câu a) :

x=-5/3

Câu b) :

GỢI Ý : 3n-5 phải chia hết cho n-4 để A là số nguyên ( đk : n khác 4)

30 tháng 7 2018

\(a,\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)

\(\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+3x=-4\)

\(\left(\frac{1}{24}-\frac{1}{30}\right).120+3x=-4\)

\(\frac{1}{120}.120+3x=-4\)

\(1+3x=-4\)

\(\Rightarrow3x=-5\)

\(\Rightarrow x=-\frac{5}{3}\)

\(b,A=\frac{3n-5}{n-4}=\frac{3n-12+7}{n-4}=3+\frac{7}{n-4}\)

Để \(A\in Z\Rightarrow7⋮n-4\Leftrightarrow n-4\in\left(1;-1;7;-7\right)\)

\(\Rightarrow n\in\left(5;3;11;-3\right)\)

11 tháng 7 2018

\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+y:\frac{1}{3}=-4\)

\(\Leftrightarrow\)\(\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)

\(\Leftrightarrow\)\(\left(\frac{1}{24}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)

\(\Leftrightarrow\)\(1+3y=-4\)

\(\Leftrightarrow\)\(3y=-5\)

\(\Leftrightarrow\)\(y=-\frac{5}{3}\)

Vậy...

11 tháng 7 2018

Ta có : 

\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+y:\frac{1}{3}=-4\)

\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+y.3=-4\)

\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+y.3=-4\)

\(\Rightarrow\left(\frac{5}{120}-\frac{4}{120}\right).120+y.3=-4\)

\(\Rightarrow\frac{1}{120}.120+y.3=-4\)

\(\Rightarrow1+y.3=-4\)

\(\Rightarrow3y=-4-1\)

\(\Rightarrow3y=-5\)

\(\Rightarrow y=-\frac{5}{3}\)

Vậy \(y=-\frac{5}{3}\)

a)\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)

\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)

\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)

\(\Rightarrow\frac{1}{120}.120+x:\frac{1}{3}=-4\)

\(\Rightarrow1+x:\frac{1}{3}=-4\)

\(\Rightarrow x:\frac{1}{3}=-4-1=-5\)

\(\Rightarrow x=-5.\frac{1}{3}=\frac{-5}{3}\)

b)\(1\frac{3}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)

\(\Rightarrow\frac{8}{5}+\left[\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right].x=\frac{16}{5}\)

\(\Rightarrow\frac{8}{5}+\frac{2}{5}.x=\frac{16}{5}\)

\(\Rightarrow\frac{2}{5}.x=\frac{16}{5}-\frac{8}{5}=\frac{8}{5}\)

\(\Rightarrow x=\frac{8}{5}:\frac{2}{5}=\frac{8}{5}.\frac{5}{2}=\frac{8}{2}=4\)

\(\Rightarrow x=4\)

17 tháng 4 2018

=> 1/24 - 1/25 + 1/25 - 1/ 26 + .... + 1/29 - 1/30 + x : 1/3 = -4

=> 1/24 - 1/30 + x : 1/3 = - 4

=> 1/ 120 + x : 1/3 = -4

=> x : 1/3 = 481/120

=> x = 481/360 

Vậy x = 481/360

17 tháng 4 2018

\(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}+x:\frac{1}{3}=-4\)

\(\Rightarrow\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}+x\times3=-4\)

\(\Rightarrow\frac{1}{24}-\frac{1}{30}+3x=-4\)

\(\Rightarrow\frac{1}{120}+3x=-4\)

5 tháng 5 2019

Để A là phân số thì ta có điều kiện \(n-1\ne0\Rightarrow n\ne1\) . Vậy điều kiện của n là \(n\ne1\)

Để A là số nguyên => \(n-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)

\(n-1\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(2\)\(0\)\(6\)\(-4\)
25 tháng 3 2018

1, Ta có : ĐK \(n\ne1\)

a, \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=1+\frac{7}{n-1}\)

để biểu thức có giá trị nguyện thì \(n-1\inƯ\left(7\right)\)

Ta có bảng sau:

n-1-17-7
n208-6

vậy n=-6, 0,2, 8

b, Ta có ĐK \(n\ne-\frac{1}{3}\)

\(\frac{6n-3}{3n+1}=\frac{6n+3-6}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}-\frac{6}{3n+1}=3-\frac{6}{3n+1}\)

để biểu thúc có giá trị nguyên thì \(3n+1\inƯ\left(6\right)\)

kẻ bảng tìm giá trị của n=0,-2/3,1/3, -1, 2/3, -4/3, 5/3, -7/3

c,ĐK : \(n\ne2\) tương tự ta phân tích \(\frac{n^2+3n-1}{n-2}=\frac{n^2-4n+4+7n-5}{n-2}=\frac{\left(n-2\right)^2}{n-2}+\frac{7n-5}{n-2}\)

\(=n-2+\frac{7n-14+9}{n-2}=\left(n-2\right)+7+\frac{9}{n-2}\)

để biểu thức có giá trị nguyên thì \(n-2\inƯ\left(9\right)\)

kẻ bảng tìm giá trị n

d,  ĐK : \(n\ne1\)phân tích:

\(\frac{n^2+5}{n-1}=\frac{n^2-2n+1+2n+4}{n-1}=\frac{\left(n-1\right)^2}{n-1}+\frac{2n-2+6}{n-1}=\left(n-1\right)+2+\frac{6}{n-1}\)

để biểu thức có giá trị nguyên thì\(n-1\inƯ\left(6\right)\)

kẻ bảng tìm giá trị của n

2, a, để A là phân số thì \(2n+3\ne0\Leftrightarrow n\ne-\frac{3}{2}\)

b, để A là số nguyên thì\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}\)

hay \(2n+3\notinƯ\left(5\right)\)

kẻ bảng tìm giá trị của n

c, để A lớn nhất thì \(2-\frac{5}{2n+3}\) cũng lớn nhất

\(\frac{5}{2n+3}\)phải nhỏ nhất\(\Rightarrow\)\(2n+3\)lớn nhất  và < 0 vì 5 là số dương

nên\(2n+3=-1\Rightarrow n=-2\)

thay n vào tính A vậy max A =7

để A bé nhất thì\(2-\frac{5}{2n+3}\)cũng bé nhất

\(\Rightarrow\)\(\frac{5}{2n+3}\)lớn nhất\(\Rightarrow\)2n+3 bé nhất và phải lớn hơn 0 

vậy\(2n+3=1\Rightarrow n=-1\)

thay n vào để tìm min A=-3

7 tháng 8 2017

a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)

b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Tới đây lập bảng tìm n.

12 tháng 3 2022

a, \(n+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

n+11-12-24-48-8
n0-21-33-57-9

 

b, \(\dfrac{n-2+5}{n-2}=1+\dfrac{5}{n-2}\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n-21-15-5
n316-3

 

c, \(\dfrac{3\left(n+4\right)-17}{n+4}=3-\dfrac{17}{n+4}\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

n+41-117-17
n-3-513-21