Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ơi bn lm đc bài này ko giúp mik vs
tìm x;y trong phương trình nghiệm nguyên sau:
a)x^2+y^2-2.(3x-5y)=11 b)x^2+4y^2=21+6x
Em tham khảo ở đây:
Tìm nghiệm nguyên dương của phương trình sau: \(3^x-2^y=1\) - Hoc24
b ) x2 - 4x - 2y + xy + 1 = 0
( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0
( x - 2 )2 - y ( 2 - x ) = 3
( 2 - x ) ( 2 - x - y ) = 3
đến đây lập bảng tìm ra x,y
a) x2 + y2 + xy + 3x - 3y + 9 = 0
2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0
( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0
( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0
\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0
\(\Rightarrow\)x = -3 ; y = 3
a, \(xy+4x-2y=2\)
\(\Rightarrow y\left(x-2\right)+4\left(x-2\right)=-6\)
\(\Rightarrow\left(x-2\right)\left(y+4\right)=-6\)
\(x-2\) | 1 | -6 | -1 | 6 | 2 | -3 | -2 | 3 |
\(y+4\) | -6 | 1 | 6 | -1 | -3 | 2 | 3 | -2 |
\(x\) | 3 | -4 | 1 | 8 | 4 | -1 | 0 | 5 |
\(y\) | -10 | -3 | 2 | -5 | -7 | -2 | -1 | -6 |
\(xy-x+2y=3\)
\(\Leftrightarrow xy-x+2y-2=1\)
\(\Leftrightarrow x\left(y-1\right)+2\left(y-1\right)=1\)
\(\Leftrightarrow\left(x+2\right)\left(y-1\right)=1\)
\(\Rightarrow x+2=1\) thì \(y-1=1\) \(\Rightarrow x=-1\) thì \(y=2\)
\(\Rightarrow x+2=-1\) thì \(y-1=-1\) \(\Rightarrow x=-3\) thì \(y=0\)
Vậy ....................
Lời giải:
PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$
$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$
Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$
$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$
$\Leftrightarrow x-5\vdots x^2+2(1)$
$\Rightarrow x^2-5x\vdots x^2+2$
$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$
$\Leftrightarrow 5x+2\vdots x^2+2(2)$
Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$
$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:
$\Rightarrow x^2+2\in\left\{3;9;27\right\}$
$\Rightarrow x^2\in\left\{1;7;25\right\}$
Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$
Thay vào $y$ ta tìm được:
$x=-1\Rightarrow y=-3$
$x=5\Rightarrow y=5$
Dễ thấy 555 và 3x đều chia hết cho 3 nên 2y chia hết cho 3.Mà (555;2) = 1 nên y chia hết cho 3.
Đặt y = 3k (\(k\inℕ^∗\)) suy ra \(3x+6k=555\Leftrightarrow x+2k=185\Rightarrow x=185-2k\)
Do x nguyên dương nên \(185-2k\ge1\Leftrightarrow2k\le184\Leftrightarrow k\le92\)
Kết hợp \(k\inℕ^∗\) suy ra \(1\le k\le92\)
Từ đây suy ra \(\hept{\begin{cases}x=185-2k\\y=3k\end{cases}}\left(1\le k\le92;k\inℕ^∗\right)\)
\(x^2+x+xy-2y^2-y=5\)
\(\Leftrightarrow2x^2+2x+2xy-4y^2-2y=10\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+\left(x^2+2xy+y^2\right)\)\(-4y^2=10\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2+\left(x+y\right)^2-4y^2=10\)
\(\Leftrightarrow\left[\left(x+1\right)^2-4y^2\right]+\left[\left(x+y\right)^2-\left(y+1\right)^2\right]=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1\right)+\left(x-1\right)\left(x+2y+1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-2y+1+x-1\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(2x-2y\right)=10\)
\(\Leftrightarrow2\left(x+2y+1\right)\left(x-y\right)=10\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x-y\right)=5\)
Vì \(x,y>0\left(x,y\inℤ\right)\Rightarrow x+2y+1\inℤ^+\)
Mà \(\left(x+2y+1\right)\left(x-y\right)=5\)
Do đó \(\left(x-y\right)\inℤ^+\)
Vì \(x+2y+1\ge x-y>0\)(vì \(x;y\in Z^+\))
\(\Rightarrow\left(x+2y+1\right)\left(x-y\right)=5.1\)
\(\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2y+1=5\\x=y+1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y+1+2y+1=5\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+2=5\\x=y+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=3\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=y+1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)(thỏa mãn \(x,y\inℤ^+\))
Vậy phương trình có nghiệm nguyên dương \(\left(x;y\right)=\left(2;1\right)\)
Lưu ý : tớ ghi \(ℤ^+\)là chỉ số nguyên dương, ghi vào vở bạn nên ghi là "số nguyen dương" thôi.
\(xy-2y-3x=1\)
\(\Leftrightarrow y\left(x-2\right)-3x=1\)
\(\Leftrightarrow y\left(x-2\right)-3x+6=7\)
\(\Leftrightarrow y\left(x-2\right)-3\left(x-2\right)=7\)
\(\Leftrightarrow\left(y-3\right)\left(x-2\right)=7\)
Đến đây dễ rồi bạn tự làm tiếp nhé