Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2+x+1\)
\(\Leftrightarrow A=-\left(x^2-x-1\right)\)
\(\Leftrightarrow A=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{5}{4}\right)\)
\(\Leftrightarrow-A=\left[\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\right]\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)hay \(-A\ge\frac{-5}{4}\)
\(\Rightarrow A\le\frac{5}{4}\)
Vậy \(A_{max}=\frac{5}{4}\)(Dấu "="\(\Leftrightarrow x=\frac{1}{2}\))
\(D=4x^2+6x+1\)
\(D=\left(2x\right)^2+2.2x.\frac{3}{2}+\frac{9}{4}+1-\frac{9}{4}\)
\(D=\left(2x+\frac{9}{4}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu = xảy ra khi :
\(2x+\frac{9}{4}=0\Rightarrow x=-\frac{9}{8}\)
Vậy Dmin = - 5/ 4 tại x = -9/8
a) \(x^2+6x-3\)
\(=x^2+6x+9-12\)
\(=\left(x+3\right)^2-12\ge-12\)
Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)
Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)
Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5
2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)
\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)
Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)
Vậy giá trị lớn nhất của B là 8 khi x = 2
2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)
\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)
Đẳng thức xảy ra khi: 4x + 1 = 0 => x = -0,25
Vậy giá trị lớn nhất của C là 5 khi x = -0,25
kb nha
a) \(B=-x^2+18x+19\)
\(B=-\left(x^2-2\cdot x\cdot9+9^2-100\right)\)
\(B=-\left[\left(x-9\right)^2-100\right]\)
\(B=100-\left(x-9\right)^2\le100\forall x\)( tự lí luận )
Dấu "=" xảy ra \(\Leftrightarrow x-9=0\Leftrightarrow x=9\)
Vậy Bmax = 100 khi và chỉ khi x = 9
b) \(A=2x^2+12x+11\)
\(A=2\left(x^2+6x+\frac{11}{2}\right)\)
\(A=2\left(x^2+2\cdot x\cdot3+3^2-\frac{7}{2}\right)\)
\(A=2\left[\left(x+3\right)^2-\frac{7}{2}\right]\)
\(A=2\left(x+3\right)^2-7\ge-7\forall x\)( tự lí luận )
Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy Amin = -7 khi và chỉ khi x = -3