K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

Dễ thấy mọi số mũ đều có dạng 4k+1

\(A=1^1+2^5+3^9+4^{13}+.....+504^{2013}+505^{2017}\)

\(=\overline{.....1}+\overline{....2}+\overline{.....3}+.....+\overline{......5}\)

Chia tổng A thành 50 nhóm và thừa 5 số hạng cuối

Chữ số tận cùng của 50 là 

50=10*5 có chứa thừa số 10

nên cstc của 50 nhóm là 0

cstc của 5 số hạng cuối là 5

=> A có tận cùng là 5

Nguồn:Shitbo

26 tháng 11 2019

a khi chia cho 17 dư 11 suy ra a có dạng \(17p+11\)

\(\Rightarrow a+74=17p+85⋮17\)

a khi chia cho 23 dư 18 suy ra a có dạng 

\(23q+18\Rightarrow a+74=23q+92⋮23\)

a khi chia cho 11 dư 3 suy ra a có dạng 

\(11r+3\Rightarrow a+74=11r+77⋮11\)

\(\Rightarrow a+74\in BC\left(17;23;11\right)\)

\(\Rightarrow a+74=4301k\)

\(\Rightarrow a+74-4301=4301k-4301\)

\(\Rightarrow a-4227=4301\left(k-1\right)\Rightarrow a=4301\left(k-1\right)+4227\) dư 4327

3 tháng 11 2019

mình ko hiểu phần cuối

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

19 tháng 12 2018

bài này có trong đề thi cuối học kì 1 ko ???????

21 tháng 12 2018

a) Tìm được dư là 4227

b) Nhận xét: Số mũ của các số hạng có dạng 4k + 1 (k ∈ N)

Chữ số tận cùng của A là chữ số tận cùng của tổng 1 + 2 + 3 + … + 505

Vậy A có tận cùng là 5.

8 tháng 12 2018

a) Ta có:

a=17x+11=23y+18=11z+3 (x,y,z E N)

=> a+74=17x+85=23y+92=11z+77

=> a+74 chia hết cho 17;23;11

Vì 3 số trên ntcn nên: a+74 chia hết cho 17.23.11=4301

Đặt: a+74=4301k (k E N*)

=> a=4301(k-1)+4227

nên: số dư của a khi chia cho 4301 là: 4227

b) 11+25+39+413+..........+505201

Ta dễ thấy rằng: 1;5;9;...vv là các số có dạng: 4k+1 (k E N)

=> 11+25+39+............+505201=(...1)+(...2)+(....3)+(...4)+........+(...4)+(...5)

Tổng tận cùng của 10 stn liên tiếp là:

1+2+3+4+5+6+7+8+9+0=45 có tc=5

Ta có 50 cặp nv nên sẽ có tc=0

5 số cuối là: (...1);(...2);(...3);(..4);(...5)

tc=1+2+3+4+5=15 có tc=5

Vậy tổng trên có tc=0+5=5

A có tc=5

9 tháng 12 2018

thank you nha

6 tháng 7 2018

dư 32 nhé bn

mk k chắc nữa nếu đúng thì k nhé!

6 tháng 7 2018

giải cụ thể hộ mình với

2 tháng 12 2018

\(a=17k+11\Rightarrow a+74=17k+85⋮17\)

\(a=23t+18\Rightarrow a+74=23t+92⋮23\)

\(a=11m+3\Rightarrow a+74=11m+77⋮11\)

Từ đó \(a+74\in BC\left(17;23;11\right)\)

\(BCNN\left(17;23;11\right)=17.23.11=4301\)

\(a+74\in B\left(4301\right)\)

\(\Rightarrow a+74=4301q\left(q\inℕ^∗\right)\)

\(\Rightarrow a+74-4301=4301q-4301\)

\(\Rightarrow a-4227=4301\left(q-1\right)\Rightarrow a=4301\left(q-1\right)+4227\)

Vậy a chia 4301 dư 4227

8 tháng 12 2018

hello

30 tháng 12 2018

Dư 32 nha bn ( 17 . 23 . 11 = 4301)

30 tháng 12 2018

\(\text{Ta có : }\)

\(a=17k+11\Rightarrow a+74=11k+85⋮17\)

\(a=23k+18\Rightarrow a+74=23k+92⋮23\)

\(a=11k+3\Rightarrow a+74=11k+77⋮11\)

Từ đó \(a+74\in BC(17,23,11)\)

\(BCNN(17,23,11)=17\cdot23\cdot11=4301\)

\(a+74\in B(4301)\)

\(\Rightarrow a+74=4301q(q\inℕ^∗)\)

\(\Rightarrow a+74-4301=4301q-4301\)

\(\Rightarrow a-4227=4301(q-1)\Rightarrow a=4301(q-1)+4227\)

Vậy a chia cho 4301 dư 4227