K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Đề bài không rõ yêu cầu. Bạn coi lại đề.

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)

20 tháng 5 2023

`5-(x-6)=4(3-2x)`

`<=>5-x+6-4(3-2x)=0`

`<=> 5-x+6-12 +8x=0`

`<=> 7x -1=0`

`<=> 7x=1`

`<=>x=1/7`

Vậy pt đã cho có nghiệm `x=1/7`

__

`3-x(1-3x) =5(1-2x)`

`<=> 3-x+3x^2=5-10x`

`<=> 3-x+3x^2-5+10x=0`

`<=> 3x^2 +9x-2=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{105}}{6}\\x=\dfrac{-9-\sqrt{105}}{6}\end{matrix}\right.\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\dfrac{-9+\sqrt{105}}{6};\dfrac{-9-\sqrt{106}}{5}\right\}\)

__

`(x-3)(x+4) -2(3x-2)=(x-4)^2`

`<=>x^2+4x-3x-12- 6x +4 =x^2 -8x+16`

`<=>x^2-5x-8=x^2-8x+16`

`<=> x^2 -5x-8-x^2+8x-16=0`

`<=> 3x-24=0`

`<=>3x=24`

`<=>x=8`

Vậy pt đã cho có nghiệm `x=8`

a) 5-(x-6)=4(3-2x)

=> 5 – x + 6 = 12 – 8x

=> -x + 8x = 12 – 5 – 6

=> 7x = 1

=> x=1/7

Vậy phương trình có nghiệm x=1/7

 b) 3 - x ( 1 - 3x)=5(1-2x)

=> 3-x+3x^2=5-10x

=> 3x^2+9x-2= 0

0=105

=> x =\(\dfrac{-9-\sqrt{105}}{6}\)

 

6 tháng 3 2022

\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)

\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

 

a: =>9x^2+6x+1-6(2x^2-13x+21)=0

=>9x^2+6x+1-12x^2+78x-126=0

=>-3x^2+84x-125=0

=>\(x\in\left\{26.42;1.58\right\}\)

b: =>(3x+1)[(2x-5)^2-(x-3)^2]=0

=>(3x+1)(2x-5-x+3)(2x-5+x-3)=0

=>(3x+1)(x-2)(3x-8)=0

=>\(x\in\left\{-\dfrac{1}{3};2;\dfrac{8}{3}\right\}\)

c; =>(x+5)(0,75x-3+1,25x)=0

=>(x+5)(2x-3)=0

=>x=3/2 hoặc x=-5

14 tháng 3 2021

a) \(\left(3x+2\right)^2-\left(3x-2\right)^2=5x+38\)

\(\Leftrightarrow\left[\left(3x+2\right)-\left(3x-2\right)\right]\left[\left(3x+2\right)+\left(3x-2\right)\right]=5x+38\)

\(\Leftrightarrow\left(3x+2-3x+2\right)\left(3x+2+3x-2\right)=5x+38\)

\(\Leftrightarrow4\cdot6x=5x+38\)

\(\Leftrightarrow24x-5x=38\)

\(\Leftrightarrow19x=38\Leftrightarrow x=\dfrac{38}{19}=2\)

Vậy \(S=\left\{2\right\}\)

b) \(\left(x+1\right)\left(x^2-2x+1\right)-2x=2\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow x^3-2x^2+x+x^2-2x+1-2x=2\left(x^2-1\right)\)

\(\Leftrightarrow x^3-2x^2+x+x^2-2x+1-2x=2x^2-2\)

\(\Leftrightarrow x^3-2x^2+x+x^2-2x+1-2x-2x^2+2=0\)

\(\Leftrightarrow x^3-3x^2-3x+3=0\)

PT vô nghiệm , không tìm được x 

Vậy \(S=\varnothing\)

c) \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)

\(\Leftrightarrow3\left(x^2-2x+4\right)+9\left(x-1\right)=3\left(x^2+x-3\right)\)

\(\Leftrightarrow3x^2-6x+12+9x-9=3x^2+3x-9\)

\(\Leftrightarrow3x^2-6x+12+9x-9-3x^2-3x+9=0\)

\(\Leftrightarrow0x+12=0\)

PT vô nghiệm 

Vậy \(S=\varnothing\)

Câu cuối tương tự 

26 tháng 1 2021

a, làm tương tự với phần b bài nãy bạn đăng 

b, \(\left(x+1\right)^2-5=x^2+11\)

\(\Leftrightarrow x^2+2x+1-5=x^2+11\)

\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)

Vậy tập nghiệm của phương trình là S = { 5 } ( kết luận như thế với các phần sau nhé ! ) 

c, \(3\left(3x-1\right)=3x+5\Leftrightarrow9x-3-3x-5=0\)

\(\Leftrightarrow6x-8=0\Leftrightarrow x=\frac{4}{3}\)

d, \(3x\left(2x-3\right)-3\left(3+2x^2\right)=0\)

\(\Leftrightarrow6x^2-9x-9-6x^2=0\Leftrightarrow-9x=9\Leftrightarrow x=-1\)

e, khai triển nó ra rút gọn rồi giải thôi nhé! ( tự làm )

f, \(\left(x-1\right)^2-x\left(x+1\right)+3\left(x-2\right)+5=0\)

\(\Leftrightarrow x^2-2x+1-x^2+x+3x-6+5=0\)

\(\Leftrightarrow2x=0\Leftrightarrow x=\frac{0}{2}\)vô lí 

Vậy phương trình vô nghiệm