Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x<>-1
b: \(P=\left(1-\dfrac{x+1}{x^2-x+1}\right)\cdot\dfrac{x^2-x+1}{x+1}\)
\(=\dfrac{x^2-x+1-x-1}{x^2-x+1}\cdot\dfrac{x^2-x+1}{x+1}=\dfrac{x^2-2x}{x+1}\)
c: P=2
=>x^2-2x=2x+2
=>x^2-4x-2=0
=>\(x=2\pm\sqrt{6}\)
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
a: ĐKXĐ: x<>0; x<>-3
b: \(=\dfrac{x^2+6x+9}{x\left(x+3\right)}\cdot\dfrac{2}{x+3}=\dfrac{2}{x}\)
c: Khi x=1/5 thì A=2:1/5=10
1) Để A xác định thì:
\(\left\{{}\begin{matrix}x-1\ne0\\1-x^3\ne0\\x+1\ne0\\x^2+2x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
\(A=\left(\dfrac{1}{x-1}-\dfrac{x}{1-x^3}\cdot\dfrac{x^2+x+1}{x+1}\right):\left(\dfrac{2x+1}{x^2+2x+1}\right)\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)}\right):\left(\dfrac{2x+1}{\left(x+1\right)^2}\right)\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{\left(2x+1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)\left(2x+1\right)}=\dfrac{x+1}{x-1}\)
2) \(\left|x\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
+) \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-1}=-3\)
+) \(x=-\dfrac{1}{2}\Leftrightarrow A=\dfrac{-\dfrac{1}{2}+1}{-\dfrac{1}{2}-1}=-\dfrac{1}{3}\)
3) có: \(\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
Để \(A\in Z\Leftrightarrow\dfrac{2}{x-1}\in Z\Leftrightarrow\left(x-1\right)\inƯ\left(2\right)\)
\(\Leftrightarrow x-1=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x=\left\{-1;0;2;3\right\}\)
Vậy.....