Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne2;x\ne m;x\ne2m\)
Ta có: \(\dfrac{3}{x-m}-\dfrac{1}{x-2}=\dfrac{2}{x-2m}\Leftrightarrow\dfrac{3}{x-m}-\dfrac{2}{x-2m}=\dfrac{1}{x-2}\)
\(\Leftrightarrow\dfrac{x-4m}{\left(x-m\right)\left(x-2m\right)}=\dfrac{1}{x-2}\Leftrightarrow\left(x-4m\right)\left(x-2\right)=\left(x-m\right)\left(x-2m\right)\)
\(\Leftrightarrow2x+xm=8m-2m^2\Leftrightarrow x\left(m+2\right)=2m\left(4-m\right)\)
- Nếu m=-2 thì 0x=-24; phương trình vô nghiệm
- Nếu \(m\ne-2\) thì \(x=\dfrac{2m\left(4-m\right)}{m+2}\) với đk \(x\ne2;x\ne m;x\ne2m\)
Với \(x\ne2\) thì \(8m-2m^2\ne2m+4\Leftrightarrow\left(m-1\right)\left(2m-4\right)\ne0\) hay
\(m\ne1\) và \(m\ne2\)
Với \(x\ne m\) thì \(8m-2m^2\ne m^2+2m\Leftrightarrow3m\left(m-2\right)\ne0\) hay
\(m\ne0\) và \(m\ne2\)
Với \(x\ne2m\) thì \(8m-2m^2\ne2m^2+4m\Leftrightarrow4m\left(m-1\right)\ne0\) hay
\(m\ne0\) và \(m\ne1\)
Vậy với \(m\ne\pm2;m\ne0\) và \(m\ne1\) thì phương trình có nghiệm \(x=\dfrac{2m\left(4-m\right)}{m+2}\)
a)ĐKXĐ: \(x\ne1\)
\(\dfrac{mx+1}{x-1}=1\Rightarrow mx+1=x-1\Leftrightarrow\left(m-1\right)x=-2\)
Nếu \(m=1\Rightarrow0x=-2\left(VN\right)\)
Nếu \(m\ne1\)
\(\left(1\right)\Rightarrow x=\dfrac{-2}{m-1}\)
Vậy nếu m=1 thì phương trình vô nghiệm
n khác 1 thì phương trình có nghiệm \(x=\dfrac{-2}{m-1}\)
b) ĐKXĐ: x khác -1
\(\dfrac{\left(m-2\right)x+3}{x+1}=2m-1\Rightarrow\left(m-2\right)x+3=\left(x+1\right)\left(2m-1\right)\\ \Leftrightarrow\left(m-2\right)x+3=\left(2m-1\right)x+2m-1\Leftrightarrow\left(2m-1\right)x-\left(m-2\right)x=3-\left(2m-1\right)\\ \Leftrightarrow\left(m+1\right)x=4-2m\)
Nếu m =-1 thì \(0x=6\left(VN\right)\)
Nếu m khác -1 thì phương trình có nghiệm duy nhất \(x=\dfrac{4-2m}{m+1}\)
Lời giải:
Xét PT(1):
\(\Leftrightarrow \frac{x-2013}{2011}+1+\frac{x-2011}{2009}+1=\frac{x-2009}{2007}+1+\frac{x-2007}{2005}+1\)
\(\Leftrightarrow \frac{x-2}{2011}+\frac{x-2}{2009}=\frac{x-2}{2007}+\frac{x-2}{2005}\)
\(\Leftrightarrow (x-2)\left(\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\right)=0\)
Dễ thấy $\frac{1}{2011}+\frac{1}{2009}-\frac{1}{2007}-\frac{1}{2005}\neq 0$ nên $x-2=0$
$\Rightarrow x=2$Xét $(2)$:\(\Leftrightarrow \frac{(x-2)(x+m)}{x-1}=0\)
Để $(1);(2)$ là 2 PT tương đương thì $(2)$ chỉ có nghiệm $x=2$
Điều này xảy ra khi $x+m=x-1$ hoặc $x+m=x-2\Leftrightarrow m=-1$ hoặc $m=-2$
Akai Haruma Giáo viên, mk không hiểu tại sao lại có m=-1, m=-2 vào nữa, mk tưởng với mọi m chứ??
`(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005`
`<=>(x-2013)/2011+1+(x-2011)/2009+1=(x-2009)/2007+1+(x-2007)/2005+1`
`<=>(x-2)/2011+(x-2)/2009=(x-2)/2007+(x-2)/2005`
`<=>(x-2)(1/2011+1/2009-1/2007-1/2005)=0`
`<=>x-2=0`
`<=>x=2`
PT tương đương khi cả 2 PT có cùng nghiệm
`=>(x^2-(2-m).x-2m)/(x-1)` tương đương nếu nhận `x=2` là nghiệm
Thay `x=2`
`<=>(4-(2-m).2-2m)/(2-1)=0`
`<=>4-4+2m-2m=0`
`<=>0=0` luôn đúng.
Vậy phương trình `(x-2013)/2011+(x-2011)/2009=(x-2009)/2007+(x-2007)/2005` và `(x^2-(2-m).x-2m)/(x-1)` luôn tương đương với nha `forall m`
\(\left(1\right)\Leftrightarrow\dfrac{x-2013}{2011}+1+\dfrac{x-2011}{2009}+1=\dfrac{x-2009}{2007}+1+\dfrac{x-2007}{2005}+1\)
\(\Leftrightarrow\dfrac{x-2}{2011}+\dfrac{x-2}{2009}-\dfrac{x-2}{2007}-\dfrac{x-2}{2005}=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
(1) và (2) tương đương khi và chỉ khi (1) và (2) có cùng tập nghiệm khi và chỉ khi (2) có nghiệm duy nhất x = 2
<=> x2 - (2 - m)x - 2m = 0 có nghệm kép x = 2 (3) hoặc x2 - (2 - m)x - 2m = 0 có 2 nghiệm x = 1 và x = 2
Giải (3) ta có: \(\left\{{}\begin{matrix}\Delta=\left[-\left(2-m\right)\right]^2+8m=0\\2^2-2\left(2-m\right)-2m=0\end{matrix}\right.\)
<=> m2 + 4m + 4 = 0
<=> (m + 2)2 = 0
<=> m = -2
Giải (4) ta có:
\(\left\{{}\begin{matrix}2^2-2\left(2-m\right)-2m=0\\1^2-\left(2-m\right)-2m=0\end{matrix}\right.\)
<=> -m - 1 = 0
<=> m = -1
Vậy có 2 giá trị của m thoả mãn là -2 và -1
1, Ta có : \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\Leftrightarrow\left(x+2\right)\left(x-1\right)=\left(x+1\right)\left(x-m\right)\)
\(\Leftrightarrow x^2-x+2x-2=x^2-xm+x-m\)
\(\Leftrightarrow x^2-x^2+x-x-2+xm+m=0\)
\(\Leftrightarrow x\left(m+1\right)-2=0\)
Nếu \(m+1\ne0\Rightarrow\)PT có nghiệm duy nhất là : x = \(\dfrac{2}{m+1}\)
Vậy nếu m # -1 thì Pt có nghiệm duy nhất
3 ,
\(\dfrac{x+m}{x+1}+\dfrac{x-2}{x}=2\)
\(\Leftrightarrow\dfrac{x^2+mx}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=2\)
\(\Leftrightarrow\dfrac{x^2+mx+x^2+x-2x-2}{x\left(x+1\right)}=2\)
Mik chỉ làm đến đây được thôi
P/S : Đăng từng bài 1 thôi :))
Câu 1: \(\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\)
ĐKXĐ: \(x\ne m;x\ne1\)
\(\text{Ta có : }\dfrac{x+2}{x-m}=\dfrac{x+1}{x-1}\\ \Rightarrow\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-m\right)\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x-m\right)}{\left(x-1\right)\left(\left(x-m\right)\right)}\\ \Rightarrow x^2+2x-x-2=x^2-mx+x-m\\ \Leftrightarrow x^2+x-2-x^2+mx-x+m=0\\ \Leftrightarrow m\left(x+1\right)=2\)
+) Với \(m\ne0\Leftrightarrow x+1=\dfrac{2}{m}\)
\(\Leftrightarrow x=\dfrac{2-m}{m}\)
\(\text{Khi đó : }\left\{{}\begin{matrix}\dfrac{2-m}{m}\ne1\\\dfrac{2-m}{m}\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m}{m}-1\ne0\\\dfrac{2-m}{m}-m\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{2-m-m}{m}\ne0\\\dfrac{2-m-m^2}{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2-2m\ne0\\2-2m+m-m^2\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2\left(1-m\right)\ne0\\2\left(1-m\right)+m\left(1-m\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\\left(2+m\right)\left(1-m\right)\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}1-m\ne0\\2+m\ne0\\1-m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
Với \(m=0\Leftrightarrow0x=2\left(\text{Vô nghiệm}\right)\)
\(\Leftrightarrow S=\varnothing\)
Vậy để phương trình có 1 nghiệm duy nhất thì \(m\ne0;m\ne1;m\ne-2\)
x= 3m-3/m-2
Tại m =2 thì pt vô nghiệm
Tại m khác 2 thì có nghiệm duy nhất vì đây là hàm bậc nhất
a) ( m - 2)x ≥ ( 2m - 1)x - 3
⇔ mx - 2x ≥ 2mx - x - 3
⇔ mx - 2mx + x - 2x ≥ - 3
⇔ - mx - x ≥ - 3
⇔ x( m + 1) ≤ 3 ( 1)
*) Với : m > - 1 , ta có :
( 1) ⇔ x ≤ \(\dfrac{3}{m+1}\)
*) Với : m < - 1 , ta có :
( 1) ⇔ x ≥ \(\dfrac{3}{m+1}\)
*) Với : m = -1 , ta có :
( 1) ⇔ 0x ≤ 3 ( luôn đúng )
KL....
b) \(\dfrac{m\left(x-2\right)}{6}+\dfrac{x-m}{3}>\dfrac{x+1}{2}\)
⇔ m( x - 2) + 2( x - m) > 3( x + 1)
⇔ mx - 2m + 2x - 2m > 3x + 3
⇔ mx - x > 4m + 3
⇔ x( m - 1) > 4m + 3 ( 2)
*) Với : m > 1 , ta có :
( 2) ⇔ x > \(\dfrac{4m+1}{m-1}\)
*) Với : m < 1 , ta có :
( 2) ⇔ x < \(\dfrac{4m+1}{m-1}\)
*) Với : m = 1 , ta có :
( 2) ⇔ 0x > 7 ( vô lý )
KL...