K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2020

a) x(x-1)=0+12

    x(x-1)=12

    x(x-1)=4.3

=>x=4

a, \(x^2-x-12=0\)

\(x^2+\left(-x\right)+\left(-12\right)=0\)

\(\Delta=-1^2-4.1.\left(-12\right)=1+48=49>0\)

Nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{1-\sqrt{49}}{2.1}=\frac{1-7}{2}=-\frac{6}{2}=-3\)

\(x_2=\frac{1+\sqrt{49}}{2.1}=\frac{1+7}{2}=\frac{8}{2}=4\)

12 tháng 2 2018

Bài 1:

                    \(x^2-8x+y^2+6y+25=0\)

\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)

Vậy...

Bài 2: 

Phương trình có nghiệm duy nhất là    x = -2/3    nên ta có:

          \(\left(4+a\right).\frac{-2}{3}=a-2\)

\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)

\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)

\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)

\(\Leftrightarrow\)\(a=-\frac{2}{5}\)

27 tháng 2 2018

Bài 3:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)

\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)

\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)

\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)

\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)

Bài 4:

\(xy-3x+2y=13\)

\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)

\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)

x+2-7-117
y-3-1-771
x-9-3-15
y2-4104

Vậy...

Bài 5:

\(xy-x-3y=2\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)

x-3-5-115
y-1-1-551
x-2248
y0-462

Vậy....

23 tháng 10 2023

Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))

Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0

     =>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0

     => (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0

     => (x-1)2 + (y-1) + [(-x+ xy) + (-y+1)] = 0

    => (x-1)2 + (y-1)+ [ x(y-1) - (y-1)] = 0

    => (x-1)2 + (y-1)2 + (x-1)(y-1) = 0

    => (x-1)2 +  2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0

    => [x-1+1/2(y-1) ]2 + 3/4.(y-1)2  = 0

   Vì: [x-1+1/2(y-1) ] >= 0 với mọi x;y thuộc R

         3/4.(y-1)2 >= 0 với mọi y thuộc R

     => (x-1+1/2y -1/2 = 0) và ( y-1 = 0)

     => (x = 1/2 -1/2y+1) và (y=1)

      => x = y =1

Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.

 

     

 

23 tháng 10 2023

đúng đó

 

 

10 tháng 2 2021

x2 - xy + 3x - y = 5

\(\Leftrightarrow\) x(x - y) + x - y + 2x = 5

\(\Leftrightarrow\) (x - y)(x + 1) + 2x + 2 = 7

\(\Leftrightarrow\) (x - y)(x + 1) + 2(x + 1) = 7

\(\Leftrightarrow\) (x - y + 2)(x + 1) = 7

Vì x, y \(\in\) Z nên (x - y + 2)(x + 1) \(\in\) Z

Xét các TH:

TH1: \(\left\{{}\begin{matrix}x-y+2=7\\x+1=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=7\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\) (TM)

TH2: \(\left\{{}\begin{matrix}x-y+2=-7\\x+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y+2=-7\\x=-2\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\) (TM)

TH3: \(\left\{{}\begin{matrix}x-y+2=1\\x+1=7\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6-y+2=1\\x=6\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\) (TM)

TH4: \(\left\{{}\begin{matrix}x-y+2=-1\\x+1=-7\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-8-y+2=-1\\x=-8\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-8\\y=-5\end{matrix}\right.\) (TM)

Vậy ...

Chúc bn học tốt!