Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có f(2) = 1.f(1)=1.1=1
f(3) = 2.f(2)=2.1=2
f(4) = 3 .f(3) = 3.2.1=6
f(5) = 4.f(4) = 4.3.2.1 = 24
f(6) = 6.f(5)=5.4.3.2.1=120
b) Tiếp tục tính như phần a ta có :
* Số tự nhiên k lớn nhất để 5\(^k\)là ước của f(101) là số thừa số 5 khi phân tích 1.2.3.4.5........98.99.100 ra thừa số nguyên tố ,tức là tổng các bội số của 5 ,của 5\(^2\)trong dãy số 1,2,3,4,5,...,98,99,100
* Các bội số của 5 trong dãy trên là : 5,10,15,............,100 gồm 100 : 5 = 20 số ; trong đó các bôi của 5\(^2\)là 25,50,75,100 có 4 số
* Vậy số thừa số 5 khi phân tích 1.2.3.4.5..........98.99.100 ra thừa số nguyên tố là : 20 + 4 = 24
+ Vậy số k lớn nhất để 5 là ước của f(101) là 24
f(6)=120
số tự nhiên k lớn nhất là 24
k mk nha mk gửi lời giải chi tiết cho ^^
chúc bạn hok tốt ná!
a) f(0) = a × 0 + b × 0 + 0
f(0) = 0
f(1) = a × 1 + b × 1 + 1
=> f(1) = a + b +1 (1)
=> Vì 1 là số nguyên nên a + b là số nguyên
f(2) = a × 4 + b × 2 + 2
=> f(2) = 4a + 2b + 2
=> f(2) = 2 ( 2a + b ) ( đặt nhân tử chung)
Mà 2 là số nguyên => 2a + b là số nguyên
=> ( 2a + b ) - ( a + b ) là số nguyên
=> f(k) luôn luôn đạt giá trị nguyên (dpcm)
f(0)=c (nguyên)
f(1)=a+b+c nguyên => a+b nguyên
f(2)=4a+2b+c nguyên =>4a+2b nguyên
=>2a+2(a+b) nguyên
=> 2a nguyên
Mặt khác :
f(k) =ak2+bk +c
= (ak2-ak)+(ak +bk) +c
= ak(k-1)+ k (a+b) +c
= 2a. k(k-1)/2 + k(a+b) +c ( chỗ này k(k-1) trên một dòng nhé, vì dùng ĐT nên khó vt xíu ^^")
Do k nguyên nên k(k-1) chia hết cho 2=> k(k-1)/2 nguyên.
=> f(k) nguyên.
cái gì vậy
bạn viết gì vậy ??????