K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

a) \(f\left(1\right)=5-2-3+4\)

                \(=0\)

\(\Rightarrow f\left(1\right)⋮x-1\)

Vậy ...

16 tháng 4 2019

a) \(f\left(-1\right)=5.\left(-1\right)^3-2.\left(-1\right)^2-3.\left(-1\right)+4\)

                    \(=-5-2+3+4\)

                    \(=0\)

Vậy x=-1 là nghiệm của đa thức f(x)

b) \(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)

                    \(=-a+b-c+d\)

                    \(=-\left(a-b+c-d\right)\)

                    \(=-\left[\left(a+c\right)-\left(b+d\right)\right]\)

                    \(=0\)( vì a+c=b+d nên (a+c) - (b+d) =0 )

Vậy x=-1 là nghiệm của đa thức f(x)

15 tháng 4 2019

a) Ta có: \(f\left(1\right)=3.1^3-2.1^2+4.1-5\)

                          \(=3-2+4-5\)

                          \(=0\)

\(\Rightarrow f\left(x\right)⋮x-1\)    ( chỗ này khó hiểu chút nhé bạn có gì hỏi mình)

Vậy x-1 là nghiệm của đa thức

b) Ta có: \(f\left(1\right)=a.1^3+b.1^2+c.1+d\)

                            \(=a+b+c+d=0\)

\(\Rightarrow f\left(x\right)⋮x-1\)

Vậy x-1 là nghiệm của đa thức 

15 tháng 4 2019

Cách 2:

\(f\left(x\right)=3x^3-2x^2+4x-5\)

           \(=3x^3-3x^2+x^2-x+5x-5\)

           \(=3x^2.\left(x-1\right)+x.\left(x-1\right)+5.\left(x-1\right)\)

             \(=\left(x-1\right).\left(3x^2+x+5\right)\)

\(\Rightarrow f\left(x\right)⋮x-1\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

P(0)=-1=> c=-1

P(1)=3=>a+b+c=3=>a+b=4

P(2)=1=>4a+2b+c=1=>4a+2b=2=>2a+b=1=>a=1-4=-3

=>b=4-(-3)=7

15 tháng 4 2019

Ta có: P(0) = a.02 + b.0 + c = -1

=> c = -1

P(1) = a.12 + b . 1 + c = 3

=> a + b + c = 3

Mà c = -1 => a + b = 3 - (-1) = 4 (1)

P(2) = a.22 + b.2 + c = 1

=> 4a + 2b + c = 1

Mà c = -1 => 2.(2a + b) = 1 - (-1) = 2

=> 2a + b = 2 : 2

=> 2a + b = 1 (2)

Từ (1) và (2) trừ vế với vế, ta có :

 (a + b) - (2a + b) = 4 - 1

=> a + b - 2a - b = 3

=> (a - 2a) + (b - b) = 3

=> -a = 3

=> a = -3

Thay a = -3 vào (1) , ta được :

  -3 + b = 4

=> b = 4 - (-3)

=> b = 7

Vậy a = -3; b = 7; c = -1

15 tháng 4 2019

a) \(x^3-2x^2+x=0\)

\(\Leftrightarrow x\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy....

15 tháng 4 2019

b) \(-x^4-x^2-3=0\)

\(\Leftrightarrow x^4+x^2+3=0\)

\(\Leftrightarrow\left(x^2\right)^2+2\cdot x^2\cdot\frac{1}{2}+\frac{1}{4}+\frac{11}{4}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\frac{-11}{4}\)( vô lý )

Đa thức vô nghiệm

15 tháng 4 2019

Mấy đa thức có kết quả bằng mấy

15 tháng 4 2019

a) Đặt f(x) =\(\left(2x^2-9\right)\left(-x^2+1\right)\)

Ta có: \(f\left(x\right)=0\Leftrightarrow\left(2x^2-9\right)\left(-x^2+1\right)=0\)

                              \(\Leftrightarrow\orbr{\begin{cases}2x^2-9=0\\-x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x^2=9\\-x^2=-1\end{cases}}}\)

                                \(\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{2}\\x^2=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{9}{2}}\\x=\pm1\end{cases}}}\)

Vậy \(x\in\left\{\pm\sqrt{\frac{9}{2}};\pm1\right\}\)là nghiệm của đa thức f(x)

15 tháng 4 2019

\(M\left(1\right)=a+b+6=0\left(1\right)\)

\(M\left(-2\right)=4a-2b+6=0\left(2\right)\)

\(\Rightarrow2.M\left(1\right)=2a+2b+12=0\left(3\right)\)

Lấy (2) cộng (3) ta được: \(6a+18=0\)

\(\Rightarrow a=-3\)

Thay a=-3 vào (1) ta được \(-3+b+6=0\)

\(\Rightarrow b=-3\)

15 tháng 4 2019

\(\Rightarrow M\left(1\right)=a+b+6\)(1)

MÀ 1 LÀ NGHIỆM NGUYÊN CỦA PT\(\Rightarrow a+b+6=0\)

TƯƠNG TỰ TA CÓ \(4a+-2b+6=0\)

\(\Rightarrow a+b=4a-2b\Rightarrow3a=3b\Rightarrow a=b\)(2)

THAY VÀO (1)TA ĐƯỢC \(a+a=-6\Rightarrow a=-3\)(3)

TỪ (2)VÀ (3)\(\Rightarrow a=b=-3\)

ko biết đúng hay sai .....

13 tháng 4 2023

Bài 1

Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)

\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm

VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)

\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)

\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)

Ra hai kết quả khác nhau 

\(\Rightarrow x=-4\) không là nghiệm

Bài 2

\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow\) phương trình vô nghiệm 

17 tháng 4 2019

Ta biết rằng: Mọi đa thức f(x) sau khi khai triển đều có dạng: \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)

Ta thấy rằng: Thay x = 1 vào,ta được: \(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) đúng bằng tổng các hệ số của đa thức sau khi khai triển.

Áp dụng vào,ta có: Tổng các hệ số của đa thức f(x) là giá trị của f(x) tại x = 1:

\(=\left(1+4-5+1\right)^{2013}-\left(2-4+4-1\right)^{2014}=1-1=0\)

16 tháng 4 2019

\(f\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2013}-\left(2.1^4-4.1^2+4.1-1\right)^{2014}\)

           \(=1^{2013}-1^{2014}\)

           \(=0\)

15 tháng 4 2019

A) 4x^2 - 3x -7 = 4x^2 + 4x - 7x - 7

                    =(x +1)(4x - 7) =0

                    =>x+1=0 <=> x=-1

              hoac 4x-7=0 <=> x=7/4

Nhu cau sau lam tuong tu