K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

1 tháng 3 2018

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

3 tháng 7 2018

Bài 1:

a) \(A=\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)

\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy \(A_{min}=-1\Leftrightarrow x=2\)

b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)

Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)

\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)

Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)

Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)

Ta có:  \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)

\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)

\(\Rightarrow\) C không có giá trị lớn nhất

Vậy C không có giá trị lớn nhất

d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)

Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)

\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)

Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)

3 tháng 7 2018

B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)

\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2

b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)

\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)

B2:

a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)

\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2

b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)

\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)

2 tháng 9 2017

Bài : 5 

a) Ta có : A = 3 + |4 - x|

Vì : \(\left|4-x\right|\ge0\forall x\)

Nên : A = 3 + |4 - x| \(\ge3\forall x\)

Vậy Amin = 3 khi x = 4

b) Ta có : B = 5|1 - 4x| - 1 

Vì  \(\text{5|1 - 4x|}\ge0\forall x\)

Nên : B = 5|1 - 4x| - 1 \(\ge-1\forall x\)

Vậy Bmin = -1 khi x = 1/4

2 tháng 9 2017

a)\(\left|2x-3\right|=6\)

\(\Rightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

b)\(2.\left|3x+1\right|=5\)

\(\left|3x+1\right|=2,5\)

\(\Rightarrow\orbr{\begin{cases}3x+1=2,5\\3x+1=-2,5\end{cases}}\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

c)\(7,5-3\left|5-2x\right|=-4,5\)

\(3\left|5-2x\right|=12\)

\(\left|5-2x\right|=4\)

\(...\)

2 tháng 7 2017

a) A=(x-1/2)^2+3/4

Vì (x-1/2)^2>=0 với mọi x

=>(x-1/2)^2+3/4>=3/4 với mọi x.

Dấu "=" xảy ra <=>x-1/2=0<=>x=1/2

Vậy Amin=3/4<=>x=1/2

2 tháng 7 2017

Ta có : (x - \(\frac{1}{2}\))2 \(\ge0\forall x\)

=> (x - \(\frac{1}{2}\))2 + \(\frac{3}{4}\)\(\ge\frac{3}{4}\forall x\)

Vậy GTNN của (x - \(\frac{1}{2}\))2 + \(\frac{3}{4}\)là \(\frac{3}{4}\) khi x =\(\frac{1}{2}\) 

\(\left|x+1,5\right|\ge0\forall x\)

Dấu " = " xảy ra khi 

| x + 1,5 | = 0

x = -1,5 

Vậy Min = 0 <=> x = -1,5

b) 

\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)

Dấu " = " xảy ra khi 

| x - 2 | = 0 

x = 2 

Vậy MinA = \(\frac{9}{10}\)<=> x = 2

\(-\left|2x-1\right|\le0\forall x\)

Dấu " = " xảy ra khi :

- | 2x - 1 | = 0

=> x = \(\frac{1}{2}\)

Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)

b) 

\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)

Dấu " = " xảy ra khi :

- | 5x - 3 | = 0

=> x = \(\frac{3}{5}\)

Vậy Max = 4 <=> x = \(\frac{3}{5}\)

Study well