K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

Yêu cầu 1:

\(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-(\sqrt{5}+3)=\frac{\sqrt{5}(\sqrt{5}+3)}{\sqrt{5}}+\frac{\sqrt{3}(\sqrt{3}+1)}{\sqrt{3}+1}-(\sqrt{5}+3)\)

\(=\sqrt{5}+3+\sqrt{3}-(\sqrt{5}+3)=\sqrt{3}\) (đpcm)

---------

Yêu cầu 2:

\(P=a-\frac{\sqrt{a}+\sqrt{a-1}-\sqrt{a}+\sqrt{a-1}}{(\sqrt{a}-\sqrt{a-1})(\sqrt{a}+\sqrt{a-1})}=a-\frac{2\sqrt{a-1}}{a-(a-1)}=a-2\sqrt{a-1}\)

\(=(a-1)-2\sqrt{a-1}+1=(\sqrt{a-1}-1)^2\geq 0\) với mọi $a\geq 1$

Ta có đpcm.

25 tháng 7 2019

Câu 2:

\( P = \dfrac{{a - b}}{{\sqrt a + \sqrt b }} + \dfrac{{a\sqrt a - b\sqrt b }}{{a + b + \sqrt {ab} }}\\ P = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\left( {\sqrt a + \sqrt b } \right)}} + \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {a + \sqrt {ab} + b} \right)}}{{a + b + \sqrt {ab} }}\\ P= \sqrt a - \sqrt b + \sqrt a - \sqrt b \\ P = 2\sqrt a - 2\sqrt b \)

25 tháng 7 2019

Câu 1:
\(a)\left( {3\sqrt {\dfrac{3}{5}} - \sqrt {\dfrac{5}{3}} + \sqrt 5 } \right)2\sqrt 5 + \dfrac{2}{3}\sqrt {75} \\ = 6\sqrt {\dfrac{{15}}{5}} - 2\sqrt {\dfrac{{25}}{3}} + 10 + \dfrac{{10\sqrt 3 }}{3}\\ = 6\sqrt 3 - \dfrac{{10}}{{\sqrt 3 }} + 10 + \dfrac{{10\sqrt 3 }}{3}\\ = 6\sqrt 3 - \dfrac{{10\sqrt 3 }}{3} + 10 + \dfrac{{10\sqrt 3 }}{3}\\ = 6\sqrt 3 + 10\\ b){\left( {\sqrt 3 - 1} \right)^2} - \sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} + \sqrt {{{\left( { - 3} \right)}^2}.3} \\ = 3 - 2\sqrt 3 + 1 - \sqrt 3 + 1 + \sqrt {{3^3}} \\ = 5 - 3\sqrt 3 + 3\sqrt 3 \\ = 5\)

25 tháng 7 2019

\(a,\left(3\sqrt{\frac{3}{5}}-\sqrt{\frac{5}{3}}+\sqrt{5}\right)2\sqrt{5}+\frac{2}{3}\sqrt{75}\)

\(=6\sqrt{3}-\frac{10\sqrt{3}}{3}+10+\frac{10\sqrt{3}}{3}\)

\(=6\sqrt{3}+10\)

\(b,\left(\sqrt{3}-1\right)^2-\sqrt{\left(1-\sqrt{3}\right)^2}+\sqrt{\left(-3\right)^2.3}\)

\(=\left(\sqrt{3}^2-2.\sqrt{3}.1+1^2\right)-|1-\sqrt{3}|+\sqrt{27}\)

\(=4-2\sqrt{3}-\sqrt{3}+1+3\sqrt{3}\)

\(=5\)

\(P=\frac{a-b}{\sqrt{a}+\sqrt{b}}+\frac{a\sqrt{a}-b\sqrt{b}}{a+b+\sqrt{ab}}\left(a\ge0;b\ge0;a\ne b\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{a+b+\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}+\sqrt{a}-\sqrt{b}\)

\(=2\sqrt{a}-2\sqrt{b}\)

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=5-3-\sqrt{5}\)

\(=2-\sqrt{5}\)

b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)

\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)

\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)

\(=2\sqrt{3}+\sqrt{6}\)

c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)

\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)

\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)

\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))

\(=\sqrt{3}+\frac{8}{3}\)

d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)

\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)

30 tháng 7 2019

\(a,\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\left(1-\frac{a+\sqrt{a}}{1+\sqrt{a}}\right)=\left(1+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1^2-\sqrt{a}^2=1-a\)

\(b,\left(2-\frac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\frac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)=\left(2-\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\left(2-\frac{-\sqrt{a}\left(\sqrt{b}-5\right)}{\sqrt{b}-5}\right)\)

\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)

\(c,\left(3+\frac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3-\frac{3a+\sqrt{a}}{3\sqrt{a}+1}\right)=\left(3+\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\right)\left(3-\frac{\sqrt{a}\left(3\sqrt{a}+1\right)}{3\sqrt{a}+1}\right)\)

\(=\left(3+\sqrt{a}\right)\left(3-\sqrt{a}\right)=3^2-\sqrt{a}^2=3-a\)

\(d,\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}+a}{1+\sqrt{a}}\right)=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}+2\right)\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(\sqrt{a}+2\right)\left(2-\sqrt{a}\right)=2^2-\sqrt{a}^2=2-a\)

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0