Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: ab+ba =10a+b+10b+a
=11a+11b
Vì 11a chia hết cho 11; 11b chia hết cho 11 nên 11a+11b chia hết cho 11
=> ab+ba chia hết cho 11
c) Ta có: aaabbb= aaax1000+bbb
=111ax1000+111b
=111(ax1000+b)
Vì 111 chia hết cho 37 nên 111(ax1000+b) chia hết cho 37
=> aaabbb chia hết cho 37
a) Ta có: ab - ba = 10a +b - 10b - a = (10a - a) - (10b - b)
= a(10 - 1) - b(10 - 1) = 9a - 9b = 9(a - b)
\(\Rightarrow\)(ab - ba ) \(⋮\)9 (vì có chứa thừa số 9)
b) Ta có: abcd = 100ab + cd = 99ab + ab + cd
Vì 99ab \(⋮\)11; (ab + cd) \(⋮\)11
\(\Rightarrow\)(99ab + ab + cd) chia hết cho 11
\(\Rightarrow\)(ab + cd) chia hết cho 11 thì abcd chia hết cho 11
c) Ta có: abcdeg = 1000abc + deg = 1001abc + (abc - deg)
Vì 1001abc chia hết cho 13
(abc - deg) chia hết cho 13
\(\Rightarrow\)abcdeg chia hết cho 13
\(\Rightarrow\)(abc - deg) chia hết cho 13 thì abcdeg chia hết cho 13.
2) vì abc + def chia hết cho 37 nên : 1000 abc + 1000 def cũng chia hết cho 37 => 1000 abc + def + 999 def cũng chia hết cho 37
mà ta thấy 999def chia hết cho 37 nên (1000 abc + def ) cũng chia hết cho 37 hay abcdef chia hết cho 37
vậy abcdef là hợp số => ( đpcm )
A, ab + ba
= ( 10a + b ) + ( 10b + a )
= ( 10a + a ) + ( 10b + b )
= 11a + 11b
Mà 11 \(⋮\)11 \(\Rightarrow\)( 11a + 11b ) \(⋮\)11
Vậy ab + ba chia hết cho 11 ( đpcm )
B, Để 7n là số nguyên tố thì 7n chỉ chia hết cho 1 và 7
Ta thấy 7n = 7 \(⋮\)1;7
Còn nếu 7n > 7 thì 7n là hợp số
Vậy để 7n là số nguyên tố thì n = 1
a) ta có:
ab+ba=ao+a+b0+b
=a.10+a+b.10+b
=a(10+1)+b(10+1)
=a.11+b.11
=(a+b)11 chia hết cho 11