K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)

\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)

27 tháng 7 2019

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)

3 tháng 7 2017

3/ \(x^5+y^5\ge x^4y+xy^4\)

\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)

3 tháng 7 2017

bài 1

theo bài ra ta có 

a + b + c = 0 => c = -[a+b] [ 1 ]

Thay (1) vao a^3+b^3+c^3 ta có: 

a^3+b^3+[-(a+b)]^3=3ab[-(a+b)] 

<=>a^3+b^3-(a+b)=-3ab(a+b) 

<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2 

<=> 0= 0 
vậy ta có đpcm.

30 tháng 11 2016
  1. Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
  2. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : 
30 tháng 11 2016

bạn tk cho mình thì mình tk lại cho bạn.ok

4 tháng 7 2016

bài 1 phân tích da thức hả bạn

1 tháng 7 2019

a) \(x^2-3x+4\)

\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)

b) \(x^2-5x+8\)

\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{7}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}>0\forall x\)

c) \(x^2+y^2+2x-4x-4y+5\)

\(=\left(x+y\right)^2-4\left(x+y\right)+4+1\)

\(=\left(x+y-2\right)^2+1>0\forall x\)