K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NN
1
3 tháng 11 2015
Ta có:ab=2cd
abcd=ab.100.cd=2.cd.100.cd=201cd=3.67.cd chia hết cho 67(đpcm)
NT
1
ST
2 tháng 12 2015
Ta có :
abcd = 100ab + cd = 100.2cd + cd = 201cd
Mà 201 chia hết cho 67 nên abcd chia hết cho 67 ( đpcm )
QT
0
HN
0
NL
0
HH
0
QH
3
26 tháng 1 2016
abcd = 100ab + cd = 100.2cd + cd (vì ab = 2cd) = 200cd + cd = 201cd chia hết cho 67
VN
1
6 tháng 2 2024
Ta có: abcd = ab x 100 + cd.
Vì ab = 2 x cd nên 2 x cd x 100 + cd = abcd
=> abcd = cd x ( 200+1) = cd x 201
Vì 201 chia hết cho 67 nên cd x 201 chia hết cho 67.
Do đó abcd chia hết cho 67
\(a.\)Ta có:
\(\overline{abcd}=100\overline{ab}+\overline{cd}=200\overline{cd}+\overline{dc}\)( Vì \(\overline{ab}=2\overline{cd}\))
\(=201\overline{cd}\)
Mà \(201⋮67\) nên \(201\overline{cd}⋮67\)\(\left(đpcm\right)\)
\(b.\)Ta có:
\(\overline{abab}=\overline{ab00}+\overline{ab}=100\overline{ab}+\overline{ab}=101\overline{ab}⋮101\)
Vậy: \(\overline{abab}⋮101\) \(\left(đpcm\right)\)