Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a\)\(:\)\(x+y=2\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow x^2+y^2=4-2xy\)
\(\Rightarrow4-2xy\)nhỏ nhất
\(\Rightarrow xy\)lớn nhất
Mà x + y = 2 \(\Rightarrow\)x , y không thể là 2 số âm
vì ta cần xy lớn nhất nên x , y không thể khác dấu
\(\Rightarrow\)ta chỉ còn trường hợp x , y đều dương và x + y = 2
\(\Rightarrow xy\)lớn nhất khi và chỉ khi x = 2 ; y= 0 và x = 0 ; y = 2
không chắc nữa
Câu 1:
\(A=x^2-3x+9\\ =x^2-3x+\dfrac{9}{4}+\dfrac{27}{4}\\ =\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{27}{4}\\ =\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\\ Do\text{ }\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge0\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(x-\dfrac{3}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{3}{2}=0\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }A_{\left(Min\right)}=\dfrac{27}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)
\(B=9x^2-6x+2\\ =9x^2-6x+1+1\\ =\left(9x^2-6x+1\right)+1\\ =\left(3x-1\right)^2+1\\ Do\text{ }\left(3x-1\right)^2\ge0\forall x\\ \Rightarrow B=\left(3x-1\right)^2+1\ge1\forall x\\ \text{Dấu “=” xảy ra khi: }\\ \left(3x-1\right)^2=0\\ \Leftrightarrow3x-1=0\\ \Leftrightarrow3x=1\\ \Leftrightarrow x=\dfrac{1}{3}\\ Vậy\text{ }B_{\left(Min\right)}=1\text{ }khi\text{ }x=\dfrac{1}{3}\)
\(C=-x^2+2x+4\\ =-x^2+2x-1+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\\ Do\text{ }\left(x-1\right)^2\ge0\forall x\\ \Rightarrow-\left(x-1\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-1\right)^2+5\le5\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ \text{Vậy }C_{\left(Max\right)}=5\text{ }khi\text{ }x=1\)
\(D=-x^2+4x\\ =-x^2+4x-4+4\\ =-\left(x^2-4x+4\right)+4\\ =-\left(x-2\right)^2+4\\ \\ Do\text{ }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow C=-\left(x-2\right)^2+4\le4\forall x\\ \text{ Dấu “=” xảy ra khi: }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{Vậy }C_{\left(Max\right)}=4\text{ }khi\text{ }x=2\)
Câu 2:
\(\text{Ta có : }x+y=2\\ \Rightarrow\left(x+y\right)^2=2^2\\ \Rightarrow x^2+2xy+y^2=4\\ Thay\text{ }x^2+y^2=10\text{ }vào\\ \Rightarrow2xy+10=4\\ \Rightarrow2xy=-6\\ \Rightarrow xy=-3\\ \text{Ta lại có : }x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ Thay\text{ }x^2+y^2=10;x+y=2;xy=-3\text{ }ta\text{ }được:\\ x^3+y^3=2\cdot\left(10+3\right)=26\)
Vậy \(x^3+y^3=26\text{ }tại\text{ }x+y=2;x^2+y^2=10\)
a) Áp dụng BĐT Bunhiacopxki , ta có :
( x2 + y2)( 12 + 12) ≥ ( x + y)2
⇔ x2 + y2 ≥ \(\dfrac{\left(x+y\right)^2}{2}=\dfrac{1}{2}\)
⇒ AMin = \(\dfrac{1}{2}\)
Dấu " =" xảy ra khi và chỉ khi : x = y = \(\dfrac{1}{2}\)
b) Ta có : x + y = 1 ⇔ x = 1 - y
Thế vào biểu thức B , ta được :
B = 3 - ( 1 - y)y
B = y2 - y + 3
B = \(y^2-2.\dfrac{1}{2}y+\dfrac{1}{4}+3-\dfrac{1}{4}\)
B = \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Do : \(\left(x-\dfrac{1}{2}\right)^2\) ≥ 0 ∀x
⇔\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\) ≥ \(\dfrac{11}{4}\)
⇒ BMin = \(\dfrac{11}{4}\) ⇔ x = y = \(\dfrac{1}{2}\)
#)Giải :
a, Ta có : \(x^2-y^2\ge\frac{\left(x+y\right)^2}{2}=2\)
=> Min = 2 khi x = y = 1
-Trả Lời:
a,Ta có:
\(x+y=2\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Leftrightarrow x^2+y^2=4-2xy\)
\(\Rightarrow4-2xy\)nhỏ nhất
\(\Rightarrow xy\)lớn nhất
Mà \(x+y=2\Rightarrow x,y\)Không thể là 2 số âm
Vì ta cần \(xy\) lớn nhất nên \(x,y\)không thể khác dấu
\(\Rightarrow\)Ta chỉ còn một trường hợp \(x,y\)đều dương và \(x+y=2\)
\(\Rightarrow xy\)lớn nhất khi và chỉ khi \(x=2;y=0\)và \(x=0;y=2\)
@#Chúc bạn học tốt#@
Nhớ k mình nha. Thank you!
Còn phần b mình không biết làm, mong bạn thông cảm.