Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
x + y = 2
=> ( x + y)2 = 4
=> x2 + 2xy + y2 = 4
=> 10 + 2xy = 4
=> 2xy = 4 - 10 = -6
=> xy = -6/2 = -3
Ta có:
A = x3 + y3
A = (x + y)(x2 - xy + y2)
A = 2(10 + 3)
A = 26
b) Ta có:
x + y = a
=> (x + y)2 = a2
=> x2 + 2xy + y2 = a2
=> b + 2xy = a2
=> xy = (a2 - b)/2
Ta có:
B = x3 + y3
B = (x + y)(x2 + xy + y2)
B = a[b + (a2 - b )/2]
B = ab + (a3 - b)/2
cho x+y=2(=)(x+y)^2=4(=)x^2+y^2+2xy=4
(=)10+2xy=4(=)2xy=-6(=)xy=-3
mà x^3+y^3=(x+y)(x^2+y^2-xy)
=2(10+3)=26
vậy x^3+y^3=26
\(x+y=2\\ \Rightarrow\left(x+y\right)^2=4\\ \Rightarrow x^2+2xy+y^2=4\\ \Rightarrow2xy=-6\Rightarrow xy=-3\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3-3\cdot\left(-3\right)\cdot2=8-\left(-18\right)=26\)
b,
\(x+y=a\\ \Rightarrow\left(x+y\right)^2=a^2\\ \Rightarrow x^2+2xy+y^2=a^2\\ \Rightarrow2xy=a^2-b\Rightarrow xy=\dfrac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3\cdot\dfrac{a^2-b}{2}\cdot a=a^3-\dfrac{3a\left(a^2-b\right)}{2}=a^3-\dfrac{3a^3-3ab}{2}=a^3-1,5a^3+3ab=\left(1-1,5\right)a^3+3ab=0,5a^3+3ab=0,5a\left(a^2+6b\right)\)
a) \(x+y=3\)
\(\Rightarrow\)\(\left(x+y\right)^2=9\)
\(\Leftrightarrow\)\(x^2+y^2+2xy=9\)
\(\Leftrightarrow\)\(2xy=4\) do x2 + y2 = 5
\(\Leftrightarrow\)\(xy=2\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=9\)
b) bạn làm tương tự
\(a,x+y=3\Rightarrow\left(x+y\right)^2=9\Rightarrow x^2+2xy+y^2=9\Rightarrow2xy=4\Leftrightarrow xy=2\)
Vì \(\left(x+y\right)=3\Rightarrow\left(x+y\right)^3=27\)
\(\Rightarrow x^3+3x^2y+3xy^2+y^3=27\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Rightarrow x^3+y^3+3.2.3=27\)
\(\Rightarrow x^3+y^3=27-18=9\)
\(b,x-y=5\Rightarrow\left(x-y\right)^2=25\Rightarrow x^2-2xy+y^2=25\Rightarrow2xy=-10\Leftrightarrow xy=-5\)
\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=5.10=50\)
a) Vì \(x-y=1\)
\(\Rightarrow\left(x-y\right)^3=1\)
\(\Leftrightarrow x^3-y^3-3xy\left(x-y\right)=1\)
\(\Leftrightarrow x^3-y^3-3xy=1\)
b) \(B=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)
\(=4\)
a) \(x^2+y^2=\left(x+y\right)^2-2xy=15^2-2.56\)\(=113\)
b) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=10^3-3.21.10=370\)