Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
a)A=5+52+53+...+58
A= (5+52)+(53+54) + ... + (57+58)
A= 5( 1+5) + 52(5+52)+... + 56(5+52)
A= 30 + 52 . 30 + ... +56.30
A = 30 ( 1 + 52+...+56) chia hết cho 30
=> A chia hết cho 30
b)B=3+33+35+37+...+329
B = (3 + 33 + 35) + (37+39+311) + ... + ( 327+328+329)
B = 273 + 36 (3 + 33 + 35) + ... + 326 (3 + 33 + 35)
B = 273 + 36.273 + ... + 326.273
B = 273 ( 1 + 36+...326) chia hết cho 273
=> B chia hết cho 273
a/ Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.
b/
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
a.
b.
từ ý a ta thấy tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 3
mà trong 3 số tự nhiên liên tiếp chắc chắn có ít nhất 1 số chẵn do đó tích 3 số tự nhiên liên tiếp luôn chia hết cho 2
vậy tích 3 số tự nhiên liên tiếp chia hết cho 2 x 3 = 6
a) Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
b) \(A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(A.B=\frac{1.\left(3.5...99\right).\left(2.4.6...100\right)}{\left(2.4.6...100\right).\left(3.5.7...99\right).101}=\frac{1}{101}\)
c) vì A < b nên A . A < A . B < \(\frac{1}{101}< \frac{1}{100}\)
do đó : A . A < \(\frac{1}{10}.\frac{1}{10}\)suy ra A < \(\frac{1}{10}\)
a, A = (2 + 22) + (23+24) + ... + (259+260)
= 2(1+2) + 23(1+2) + ... + 259(1+2)
= 2. 3 + 23.3 + ... + 259. 3
= 3(2+23+...+259)
Vì 3 chia hết cho 3 nên A chia hết cho 3
A= (2+22+23)+(24+25+26)+...+(258+259+260)
= 2(1+2+22) + 24(1+2+22)+...+258(1+2+22)
= 2. 7 + 24. 7 + ... + 258. 7
Vì 7 chia hết cho 7 nên A chia hết cho 7
A= (2+22+23+24) + (25+26+27+28)+...+(257+258+259+260)
= 2(1+2+22+23) + 25(1+2+22+23)+...+ 257(1+2+22+23)
= 2. 15 + 25.15 + ... + 257.15
Vì 15 chia hết cho 15 nên A chia hết cho 15
Chúc bn học tốt, còn phần b mik đang nghĩ, tạm thời phần a đã nha bn