Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow x=24\\\frac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\)
2)
Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
xy=10 <=> 2k.5k=10
<=>10k2=10
<=> k=1
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
3)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)
\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (đpcm)
\(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\Rightarrow x.y=2k.5k=10\Rightarrow10k^2=10\Rightarrow k^2=1\Rightarrow k\in\left\{1;-1\right\}\)
k=1 thì \(\frac{x}{2}=\frac{y}{5}=1\Rightarrow x=2;y=5\)
k=-1 thì \(\frac{x}{2}=\frac{y}{5}=-1\Rightarrow x=-2;y=-5\)
a) 3,5(15) = 3,5 + 0,0(15) = 3,5 + 1,5. 0,(01) = 3,5 + 1,5.1/99 = 3,5 + 1/66 = 116/33
b) Ta có: \(\frac{2x-y}{x+y}=\frac{2}{3}\)
=> (2x - y).3 = 2(x + y)
=> 6x - 3y = 2x + 2y
=> 6x - 2x = 2y + 3y
=> 4x = 5y
=> \(\frac{x}{y}=\frac{5}{4}\)
c) Đặt : \(\frac{a}{b}=\frac{c}{d}=k\) => \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó, ta có:
\(\frac{\left(bk\right)^2+bk.dk}{\left(dk\right)^2+dk.bk}=\frac{b^2k^2+bdk^2}{d^2k^2+bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2+bd\right)}=\frac{b^2+bd}{d^2+bd}\)
=> Đpcm