K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

 a,Tứ giác AEHG  la hình chữ nhật.thật vậy:

xét tứ giác AEHG có goc a=90 độ ,góc E=90 độ(HE VUÔNG GÓC VỚI AB) , góc H=90 độ (AH vuông góc với BC)

suy ra tứ giác AEHG la hình chữ nhật

b,xét tam giac BHA có AH^2=AE*AB (1)

xét tam giác AHC có AH^2=AF*AC (2)

Từ (1) và (2) suy ra AE*AB=AF*AC

29 tháng 5 2020

Cô nàng Song Ngư             

AH là gì

a: BC=10cm

DE=5cm

b: Xét ΔABC có

D là trung điểm của AB

F là trung điểm của BC

Do đó: DF là đường trung bình của ΔABC

Suy ra: DF//AC và DF=AC/2

hay DF=CE và DF//CE

Xét tứ giác DFCE có 

DF//CE

DF=CE
Do đó: DFCE là hình bình hành

c: Xét tứ giác ADFE có 

FD//AE
FD=AE
Do đó: ADFE là hình bình hành

mà \(\widehat{EAD}=90^0\)

nên ADFE là hình chữ nhật

Suy ra: FA=DE

14 tháng 12 2022

a:BC=10cm

=>AM=5cm

b: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

c: Xét tứ giác AMCF có

D là trung điểm chung của AC và MF

MA=MC

Do đó: AMCF là hình thoi

a:

BC=10cm

Xét ΔABC có BD là phân giác

nên DA/DC=BA/BC=6/10=3/5

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: \(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)

nên AH=4,8cm

\(S_{HBA}=\dfrac{HA\cdot HB}{2}=\dfrac{4.8\cdot3.6}{2}=2.4\cdot3.6=8.64\left(cm^2\right)\)

25 tháng 2 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

Vì BD là pg \(\dfrac{DA}{DC}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

b, Xét tam giác ABH và tam giác CBA ta có 

^B _ chung 

^AHB = ^CAB = 900

Vậy tam giác ABH ~ tam giác CBA (g.g) 

=> AB/BC = BH/AB => AB^2 = BH.BC 

c, Ta có \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{48}{2}=24cm^2\)

Vậy \(\dfrac{S_{ABC}}{S_{HBA}}=\left(\dfrac{BC}{AB}\right)^2\Rightarrow\dfrac{24}{S_{HBA}}=\dfrac{100}{36}\Rightarrow S_{HBA}=\dfrac{216}{25}cm^2\)

 

21 tháng 6 2019

#)Bạn tham khảo nhé :

Câu hỏi của Trần NgọcHuyền - Toán lớp 8 - Học toán với OnlineMath

P/s : vô tkhđ của mk ấn vô đc nhé !

2 tháng 7 2019

#)Giải : 

(Bạn tự vẽ hình :P)

a) Xét ΔABC có:

IB = IA ( I là tia đối của AB)

BM = CM (M là tia đối của BC)

=> IM là đương trung bình của ΔABC

=> IM // AC và IM = 1/2AC

mà AK = 1/2AC (K là tia đối của AC) và K thuộc AC

=> IM // AK và IM = AK

=> Tứ giác AIMK là hình bình hành có góc A = 90o

=> AIMK là hình chữ nhật

Có : IA = IB = AB/2= 6/2= 3 (I là tia đối của AB)

AK = CK = AC/28/2= 4 (K là tia đối của AC)

Diện tích hình chữ nhật AIMK :

SAIMK = AI.AK = 3.4 = 12 cm2

b) Áp dụng Py-ta-go vào Δ vuông ABC có:

BC2 = AB2 + AC2

hay BC2 = 62 + 82 = 100

=> BC = 10

Xét Δ vuông ABC có :

AM là đường trung tuyến ứng với BC

=> AM = 1/2BC = 1/2.10

=> AM = 5

Vậy AM = 5cm

c) Có IM = AK (cạnh đối hình chữ nhật AIMK)

mà JI = JM = 1/2IM và SA = SK = 1/2AK

=> JI = JM = SA = SK (1)

Có IA = MK (cạnh đối hình chữ nhật AIMK )

mà PI = PA = 1/2IA và HM = HK = 1212MK

=> PI = PA = HM = HM (2)

Có góc A = góc I = góc M = góc K (3)

Từ (1) (2) và (3) suy ra :

ΔPIJ = ΔPAS = ΔHKS = ΔHKJ (c-g-c)

=> JP = JH = SP = SH (các cạnh tương ứng )

=> Tứ giác JPSH là hình thoi

=> PH vuông góc với JS (tính chất đường chéo hình thoi)

a: Xét ΔABC có BM là phân giác

nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)

=>\(\dfrac{AM}{6}=\dfrac{CM}{10}\)

=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)

mà AM+CM=AC=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{8}{8}=1\)

=>\(AM=3\cdot1=3\left(cm\right)\)

b: Xét ΔABM vuông tại A và ΔEBA vuông tại E có

\(\widehat{EBA}\) chung

Do đó: ΔABM đồng dạng với ΔEBA

c: Ta có: ΔABM vuông tại A

=>\(BM^2=BA^2+AM^2\)

=>\(BM^2=6^2+3^2=45\)

=>\(BM=3\sqrt{5}\left(cm\right)\)

Xét ΔBAM vuông tại A có AE là đường cao

nên \(BE\cdot BM=BA^2\)

=>\(BE\cdot3\sqrt{5}=6^2=36\)

=>\(BE=\dfrac{36}{3\sqrt{5}}=\dfrac{12}{\sqrt{5}}\left(cm\right)\)

 

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

a:BC=căn 6^2+8^2=10cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC

=>BD/DC=3/4

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm

b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>S CED/S CAB=(CD/CB)^2=(4/7)^2=16/49