Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác AEFD là hình thoi, tứ giác AECF là hình bình hành (tự chứng minh).
b) Tứ giác AECF là hình bình hành nên EN // FM. Tứ giác AECF là hình bình hành nên EM // FN. AEFD là hình thoi nên AF \(\perp\) DE.
Hình bình hành EMFN có \(\widehat{M}=90^o\) nên là hình chữ nhật.
c) Hình chữ nhật EMFN là hình vuông
\(\Leftrightarrow\) ME = MF \(\Leftrightarrow\) DE = AF (vì DE = 2ME, AF = 2MF)
\(\Leftrightarrow\) Hình thoi AEFD có hai đường chéo bằng nhau
\(\Leftrightarrow\) AEFD là hình vuông \(\Leftrightarrow\) \(\widehat{A}=90^o\).
\(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.
Như vậy, hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật.
a) bạn tự vẽ hình nhé!
Có : \(AE=BE=\frac{1}{2}AB\) (đề cho)
\(DF=CF=\frac{1}{2}DC\) (đề cho)
mà \(AB=CD\)
\(\Rightarrow\) \(AE=BE=DF=CF\)
Xét tứ giác AEFD có:
\(AE=DF\) (cmt) và AE//DF( AB//CD)
\(\Rightarrow\) Tứ giác AEFD là hình bình hành
Xét tứ giác AECF có :
AE = CF ( cmt) và AE//CF ( AB//CD)
\(\Rightarrow\) Tứ giác AECF là hình bình hành
M là giao điểm của AF và DE
\(\Rightarrow\) AM = FM=\(\frac{1}{2}AF\) ( tính chất đ/chéo hbhành) (1)
N là giao điểm của BF và CE
\(\Rightarrow\) EN = CN=\(\frac{1}{2}CE\) ( tính chất đ/chéo hbhành) (2)
Có AF = AM + FM
CE = EN + CN
mà AE = CE ( AECF là hbh)
Từ (1) và (2) suy ra MF= EN và MF//EN ( AF//CE )
\(\Rightarrow\) EMFN là hình bình hành (3)
Có AE = AD ( cùng bằng 2AB ) và AEFD là hình bình hành nên AEFD là hình thoi
\(\Rightarrow\) AF \(\perp\) DE tại M hay góc EMF = 90 độ (4)
Từ (3) và (4) suy ra : EMFN là hcn
a: Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
mà AE=AD
nên AEFD là hình thoi
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
mà BE=BC
nên BEFC là hình thoi
=>EC\(\perp\)BF tại N
Ta có: AEFD là hình thoi
nên AF\(\perp\)ED tại M
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó:ΔEDC vuông tại E
Xét tứ giác EMFN có
\(\widehat{EMF}=\widehat{ENF}=\widehat{NEM}=90^0\)
Do đó: EMFN là hình chữ nhật
c: Để EMFN là hình vuông thì ME=MF
=>AF=DE
Hình thoi AEFD có AF=DE
nên AEFD là hình vuông
=>\(\widehat{BAD}=90^0\)
A) FE LÀ ĐTB CỦA ABCD => EF//AB//CD. SẴN CÓ AE//DF => AFED LÀ HBH
AB=2AE. DC=2FC. MÀ AB=DC (HBH) =. AE=FC. MÀ EA//FC => AECF LÀ HBH => EN//MF
B) TƯƠNG TỰ CÂU A C/M EBFD LÀ HBH => NF//ME. => MENF LÀ HÌNH BÌNH HÀNH
AEDF LÀ HBH => M LÀ TRUNG ĐIỂM AF VÀ DE; TG TỰ N LÀ TĐ EC
=> MN LÀ ĐTB CỦA TAM GIÁC DEC => MN=1/2 DC => MENF LÀ HCN <=> MN=EF <=> 1/2 DC=AD HAY HÌNH BÌNH HÀNH ABCD PHẢI CÓ CD=2AD
C) MENF LÀ HÌNH VUÔNG <=> CD=2AD(LÀ HÌNH CN) VÀ EF LÀ PHÂN GIÁC CỦA GÓC DEC . MÀ EF ĐÃ LÀ TRUNG TUYẾN =>TAM GIÁC CÂN => ĐỒNG THỜI LÀ ĐG CAO <=> EF VUÔNG GÓC DC. MÀ EF//AD => AD VUÔNG GOC DC => ABCD LÀ HÌNH CHỮ NHẬT