Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 12 < 15 (*). Để có bất đẳng thức cùng chiều là 12a < 15a ta phải nhân cả hai vế của (*) với số dương. Vậy a là số dương.
a) Do -8 < 4 nên a < 0 b) Do 5 ≤ 30 nên a ≥ 0
c) Do 6 < 12 nên a ≤ 0. d) Do -5 < 15 nên a < 0.
a)12a<15a
Ta có:12<15 để có bất đẳng thức
12a<15a ta phải nhân cả 2 vế của bất đẳng thức 12<15 vs số a
Để đc bất đẳng thức cùng chiều thì a<0
b)4a<3a
Vì 4>3 và 4a<3a trái chiều.Để nhân 2 vế của bất đẳng thức 4>3 vs a đc bất đẳng thức trái chiều thì a<0
c)-3a>-5a
Từ -3 > -5 để có -3a > -5a thì a phải là số dương
a) Ta có: 12 < 15. Để có bất đẳng thức
12a < 15a ta phải nhân cả hai vế của bất đẳng thức 12 < 15 với số a.
Để được bất đẳng thức cùng chiều thì a > 0
b) Vì 4 > 3 và 4a < 3a trái chiều. Để nhân hai vế của bất đẳng thức 4 > 3 với a được bất đẳng thức trái chiều thì a < 0
c) Từ -3 > -5 để có -3a > -5a thì a phải là số dương
\(\left|a^2-3a+1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}a^2-3a+1=1\\a^2-3a+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\left(a-3\right)=0\\\left(a-2\right)\left(a-1\right)=0\end{matrix}\right.\Leftrightarrow a\in\left\{0;3;2;1\right\}\)
\(\dfrac{2a^3-12a^2+17a-a-2}{a-2}=\dfrac{2a^3-12a^2+16a-2}{a-2}\)
\(=\dfrac{2a^3-4a^2-8a^2+16a-2}{a-2}\)
\(=2a^2-8a-\dfrac{2}{a-2}\)
Khi a=2 thì A không có giá trị
Khi a=1 thì \(A=2-8-\dfrac{2}{1-2}=-6+2=-4\)
Khi a=0 thì \(A=0-0-\dfrac{2}{0-2}=-\dfrac{2}{-2}=1\)
Khi a=3 thì \(A=2\cdot9-8\cdot3-\dfrac{2}{3-2}=18-24-2=-8\)
Ta có: 4 > 3 (**). Để có bất đẳng thức ngược chiều là 4a < 3a ta phải nhân cả hai vế của (**) với số âm. Vậy a là số âm.
Ta có: -3 > -5 (***). Để có bất đẳng thức cùng chiều là -3a > -5a ta phải nhân cả hai vế của (***) với số dương. Vậy a là số dương.
a)\(13a< 17a\)
⇒\(13.a< 17.a\)
mà \(13< 17\)
⇒\(a\) là số dương
b)\(19a< 12a\)
⇒\(19.a< 12.a\)
mà \(19>12\)
⇒\(a\) là số âm