Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=1/5-1/8+1/8-1/11+...+1/2006-1/2009=1/5-1/2009=2004/10045
b,B=1/4x(4/6x10+4/10x14+...+4/402x406)
=1/4x(1/6-1/10+1/10-1/14+...+1/402-1/406)
=1/4x(1/6-1/406)
=1/4x100/609=25/609
c,C=2x(5/7x12+5/12x17+...+5/502x507)
=2x(1/7-1/12+1/12-1/17+...+1/502-1/507)
=2x(1/7-1/507)
=2x500/3549
=1000/3549
Xin lỗi vì ko viết được rõ ràng.Mong bạn thông cảm. Chúc bạn học tốt.
\(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\)
\(=\frac{1}{3}\left(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2006}-\frac{1}{2009}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)
\(=\frac{1}{3}\left(\frac{2009}{10045}-\frac{5}{10045}\right)\)
\(=\frac{1}{3}.\frac{2004}{10045}=\frac{2004}{30135}\)
a)
\(A=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2006.2009}\)
\(=\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+....+\frac{2009-2006}{2006.2009}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(=\frac{1}{5}-\frac{1}{2009}=\frac{2004}{10045}\)
b)
\(B=\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{402.406}\)
\(\Rightarrow 4B=\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{402.406}\)
\(4B=\frac{10-6}{6.10}+\frac{14-10}{10.14}+...+\frac{406-402}{402.406}\)
\(4B=\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{402}-\frac{1}{406}\)
\(4B=\frac{1}{6}-\frac{1}{406}=\frac{100}{609}\Rightarrow B=\frac{25}{609}\)
\(A=\dfrac{10}{3\cdot7}-\dfrac{1}{7}+\dfrac{1}{12}-\dfrac{1}{12}+\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{1}{24}=\dfrac{10}{21}+\dfrac{1}{24}=\dfrac{29}{56}\)
\(\frac{6}{7.12}+\frac{6}{12.17}+...+\frac{6}{87.92}+\frac{6}{92.95}\)
= \(6\left(\frac{5}{7.12}.\frac{1}{5}+\frac{5}{12.17}.\frac{1}{5}+...+\frac{5}{92.95}.\frac{1}{5}\right)\)
= \(6.\frac{1}{5}\left(\frac{5}{7.12}+\frac{5}{12.17}+...+\frac{5}{87.92}+\frac{5}{92.95}\right)\)
= \(\frac{6}{5}\left(\frac{5}{7}-\frac{5}{12}+\frac{5}{12}-\frac{5}{17}+...+\frac{5}{92}-\frac{5}{95}\right)\)
= \(\frac{6}{5}\left(\frac{5}{7}-\frac{5}{95}\right)\)= \(\frac{6}{5}.\frac{88}{133}=\frac{528}{665}\)
Tự rút gọn, mình lười.
Đặt A=1010+10102+...+10102015A=1010+10102+...+10102015
Dễ thấy 1010≡4(mod7)1010≡4(mod7)
Nên A≡4+410+4102+...+4102014A≡4+410+4102+...+4102014
Dễ chứng minh được 410≡4(mod7)410≡4(mod7)
Nên 410≡4102≡...≡4102015≡4(mod7)410≡4102≡...≡4102015≡4(mod7)
Do đó A≡4.2015≡3(mod7)A≡4.2015≡3(mod7)
Theo đề bài ta có :
\(a^n=a^{10}\cdot\left(a^2\right)^{10}\cdot\left(a^3\right)^{10}...\left(a^{10}\right)^{10}\)
\(\Leftrightarrow a^n=a^{10}\cdot a^{20}\cdot a^{30}...a^{100}\)
\(\Rightarrow a^n=a^{10+20+30+...+100}\)
\(\Rightarrow n=10+20+30+...+100\)
\(\Rightarrow n=550\)
Đáp số : n = 550.
= là sao ????
ghi sai hả
xcvvvvvvvvvvvvvvvvvvv
Mình làm câu a) nha!!!
+) \(A=2009^{2010}+2009^{2009}\)
\(=2009^{2009}.\left(2009+1\right)\)
\(=2009^{2009}.2010\)
+) \(B=2010^{2010}=2010^{2009}.2010\)
Vì \(2010^{2009}>2009^{2009}\)nên \(2010^{2009}.2010>2009^{2009}.2010\)hay \(B>A\)
Vậy \(A< B\)
Hok tốt nha^^
\(A=\frac{10}{7.12}+\frac{10}{12.17}+\frac{10}{17.22}+...+\frac{10}{502.507}\)
\(=2\left(\frac{5}{7.12}+\frac{5}{12.17}+\frac{5}{17.22}+...+\frac{5}{502.507}\right)\)
\(=2\left(\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{22}+...+\frac{1}{502}-\frac{1}{507}\right)\)
\(=2\left(\frac{1}{7}-\frac{1}{507}\right)\)
\(=tự tính\)