Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8) \(\left(x+4\right)\left(6x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\6x-12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\6x=12\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\)
Vậy \(x\in\left\{-4;2\right\}\)
11) \(\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}-0\\3x=-\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}\\x=-\frac{1}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{16}\\x=-\frac{1}{9}\end{cases}}}\)
Vậy \(x\in\left\{\frac{7}{16};-\frac{1}{9}\right\}\)
12) \(3x-2x^2=0\)
\(\Leftrightarrow x\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{0;\frac{3}{2}\right\}\)
13) \(5x+10x^2=0\)
\(\Leftrightarrow5x\left(1+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x\in\left\{0;-\frac{1}{2}\right\}\)
= x3 + 33 -x(x2 -1) -27 =0 ( tổng các lập phuong)
x =0
CX100%
Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x = y = 1/2.
GTNN của A là 6.
\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)
Dấu "=" xảy ra khi x = y = 1/2.
Vậy GTNN của B là 8063.
Để A đạt GTLN
=>x2 -2x đạt giá trị dương nhỏ nhất
=>x2-2x=1
=>x2-2x-1=0
=>x=$1-\sqrt{2};\sqrt{2}+1$1−√2;√2+1
Vậy A ko xảy ra GTLN
Để A đạt GTLN
=>x2 -2x đạt giá trị dương nhỏ nhất
=>x2-2x=1
=>x2-2x-1=0
=>x=\(1-\sqrt{2};\sqrt{2}+1\)
Vậy A ko xảy ra GTLN
\(a,5x^3+x=0\)\(\Rightarrow x\left(5x^2+1\right)=0\)
Vì \(5x^2+1>0\Rightarrow x=0\)
\(b,x^3+3x^2+3x+2=0\)
\(\Rightarrow x^3+2x^2+x^2+2x+x+2=0\)
\(\Rightarrow x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow x+2=0\Leftrightarrow x=-2\)
ta co x2+3y2=4xy suy ra x2+3y2-4xy=0 suy ra x2-xy-3xy+3y2=0 suy ra x(x-y)-3y(x-y)=0 suy ra (x-3y)(x-y)=0
với x-y=0 suy ra x=y mà theo đề bài x>y>0 suy ra x-3y=0 suy ra x=3y thay vào P là xong
Ban coi co dung khong nha
a) \(\left(7-14x\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7-14x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}14x=7-0\\x=2\end{cases}\Leftrightarrow}}\orbr{\begin{cases}14x=7\\x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}}\)
Vậy \(x\in\left\{\frac{1}{2};2\right\}\)
b) \(\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-1\\x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}}\)
Vậy \(x\in\left\{-\frac{1}{2};3\right\}\)