Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải mẫu pt đầu thôi nhé, những pt sau ttự.
1,\(x^4-\frac{1}{2}x^3-x^2-\frac{1}{2}x+1=0\)
Ta thấy x=0 ko là nghiệm.
Chia cả 2 vế cho x2 >0:
pt\(\Leftrightarrow x^2-\frac{1}{2}x-1-\frac{1}{2x}+\frac{1}{x^2}=0\)
Đặt \(t=x-\frac{1}{x}\left(t\in R\right)\)
\(\Rightarrow x^2+\frac{1}{x^2}=t^2+2\)
pt\(\Leftrightarrow t^2-\frac{1}{2}t+1=0\)(vô n0)
Vậy pt vô n0.
#Walker
Bài 1:
a) \(5x-15y=5\left(x-3y\right)\)
b) \(\dfrac{3}{5}x^2+5x^4-x^2y=x^2\left(\dfrac{3}{5}+5x^2-y\right)\)
c) \(14x^2y^2-21xy^2+28x^2y=7xy\left(2xy-3y+4x\right)\)
d) \(\dfrac{2}{7}x\left(3y-1\right)-\dfrac{2}{7}y\left(3y-1\right)=\dfrac{2}{7}\left(3y-1\right)\left(x-y\right)\)
e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
f) \(\left(x+y\right)^2-4x^2=\left(-x+y\right)\left(3x+y\right)\)
g) \(27x^3+\dfrac{1}{8}=\left(3x+\dfrac{1}{2}\right)\left(6x^2+1,5x+\dfrac{1}{4}\right)\)
h) \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3=2y\left(3x^2+y\right)\)
Bài 2:
a) \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\Rightarrow x=-1\\x+2=0\Rightarrow x=-2\end{matrix}\right.\)
b) \(x\left(3x-2\right)-5\left(2-3x\right)=0\)
\(\Rightarrow x\left(3x-2\right)+5\left(3x-2\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\Rightarrow x=\dfrac{2}{3}\\x+5=0\Rightarrow x=-5\end{matrix}\right.\)
c) \(\dfrac{4}{9}-25x^2=0\)
\(\Rightarrow\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-5x=0\Rightarrow x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0\Rightarrow x=\dfrac{-2}{15}\end{matrix}\right.\)
d) Có tới 2 dấu "=".
bài 1 dễ mk ko lm nữa nhé
bafi2:
a,x(x+1)(x+2)=0
x=0 ; x=-1 ; x=-2
b,x(3x-2)+5(3x-2)=0
(x+5)(3x-2)=0
x=-5 ; x=2/3
c,
(2/3)2- (5x)2=0
(2/3-5x)(2/3+5x)=0
x=+-2/15
d, X2-2*1/2x+(1/2)2=0
(X-1/2)22=0
X=1/2
a, Ta có : \(x^3-5x^2+8x-4=0\)
=> \(x^3-x^2-4x^2+4x+4x-4=0\)
=> \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x^2-4x+4\right)=0\)
=> \(\left(x-1\right)\left(x-2\right)^2=0\)
=> \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b, Ta có : \(x^4-4x^2+12x-9=0\)
=> \(x^4-x^3+x^3-x^2-3x^2+3x+9x-9=0\)
=> \(x^3\left(x-1\right)+x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x^3+3x^2-2x^2-6x+3x+9\right)=0\)
=> \(\left(x-1\right)\left(x^2\left(x+3\right)-2x\left(x+3\right)+3\left(x+3\right)\right)=0\)
=> \(\left(x-1\right)\left(x+3\right)\left(x^2-2x+3\right)=0\)
Mà \(x^2-2x+3=\left(x-1\right)^2+2>0\)
=> \(\left(x-1\right)\left(x+3\right)=0\)
=> \(\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
c, Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
=> \(\left(x^2+x+4x+4\right)\left(x^2+2x+3x+6\right)-24=0\)
Đặt \(x^2+5x=a\) ta được phương trình :\(\left(a+4\right)\left(a+6\right)-24=0\)
=> \(a^2+4a+6a+24-24=0\)
=> \(a\left(a+10\right)=0\)
=> \(\left[{}\begin{matrix}a=0\\a+10=0\end{matrix}\right.\)
- Thay lại \(x^2+5x=a\) vào phương tình ta được :\(\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(VL\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
( tự kết luận dùm mình nha )
a/ \(x^3-4x^2+4x-x^2+4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b/ \(\Leftrightarrow x^4+2x^3-3x^2-2x^3-4x^2+6x+3x^2+6x-9=0\)
\(\Leftrightarrow x^2\left(x^2+2x-3\right)-2x\left(x^2+2x-3\right)+3\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2-2x+3\right)=0\)
\(\Leftrightarrow x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
c/ \(\Leftrightarrow\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+4=t\)
\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+5x+4=4\\x^2+5x+4=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
a/ Chắc là bạn ghi nhầm đề? Số cuối là số 9 mới đúng, chứ 27 thì câu này vô nghiệm
\(x^4+4x^3+4x^2+8x^2+12x+27=0\)
\(\Leftrightarrow x^2\left(x+2\right)^2+8\left(x+\frac{3}{4}\right)^2+\frac{45}{2}=0\)
Vế phải dương nên pt vô nghiệm
b/ Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\) ta được:
\(x^2+\frac{1}{x^2}-5\left(x-\frac{1}{x}\right)+6=0\)
Đặt \(x-\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)
\(\Rightarrow a^2+2-5a+6=0\)
\(\Leftrightarrow a^2-5a+8=0\Rightarrow\) pt vô nghiệm
Lại nhầm đề nữa???? Dấu thứ 2 là dấu + thì pt này có nghiệm đẹp
a) 5x +3=2x-8 <=>5x-2x=-8-3 <=>3x=-11 <=> x=\(\dfrac{-11}{3}\)
b)6x-3(x+2)=5x+3<=> (6-3-5)x-9=0 <=> x=\(\dfrac{-9}{2}\)
c) (3x-9)(5x+10)=0<=> \(\left[{}\begin{matrix}3x-9=0\\5x+10=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d)8x(x+2)+16(x+2)=0<=>(x+2)(8x+16)=0<=>\(\left[{}\begin{matrix}x=-2\\x=-2\end{matrix}\right.\)
e)x2 -12x+35=0 <=>\(\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)