Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có phải ý bạn là : \(\left(50^2+48^2+...+2^2\right)-\left(49^2+47^2+...+1^2\right)\)đúng không :)
Đặt \(A=\left(50^2+48^2+...+2^2\right)-\left(49^2+47^2+...+1^2\right)\)
\(=50^2+48^2+...+2^2-49^2-47^2-...-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=99+95+91+...+3\)
Biểu thức đã được đơn giản hóa và trở thành tổng dãy số cách đều 4 đơn vị.
Số các số hạng là :
\(\frac{99-3}{4}+1=25\)( số hạng )
\(\Rightarrow A=\frac{25.\left(99+3\right)}{2}=1275\)
(502+482+...+22) - (492+472+...+12)
= (502-492) + (482-472) + ... + (22-12)
= (50+49)(50-49) + (48+47)(48-47) + ... + (2+1)(2-1)
= 50+49+48+47+...+1
= \(\frac{\left(50+1\right).50}{2}=\frac{51.50}{2}=1275\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=2+2\left(ab+bc+ac\right)\)
=> \(0=2+2\left(ab+bc+ac\right)\)=> \(ab+bc+ca=-1\)
=> \(\left(ab+bc+ac\right)^2=1\)
Mà \(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+a^2bc+abc^2\right)\)
\(=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+a^2c^2\)
=> \(a^2b^2+b^2c^2+c^2a^2=1\)
Mặt khác : \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
=> \(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=4-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
=> \(a^4+b^4+c^4=4-2=2\)
há há.. bài này mà lớp 8 hã?
\(50^2+48^2+...+4^2+2^2-49^2-47^2-...-1^2\)
\(=50^2-49^2+48^2-47^2+...+2^2-1^2\)
\(=\left(50+49\right)\left(50-49\right)+\left(48+47\right)\left(48-47\right)+...\left(2+1\right)\left(2-1\right)\)
\(=99+95+...+3\)
\(=\frac{\left(99+3\right)\left(99-3\right):4+1}{2}\)
\(=1275\)
A - B = (502+482+462+.....+42+22) - (492+472+452+.....+32+12)
= 502 + 482 + 462 +... + 42+ 22 - 492 - 472 - .... - 32 - 12
= (502 - 492) + (482 - 472) + ... + (42 - 32) + (22 - 12)
= (50+49) (50 - 49) + (48 - 47) (48+47)+....+(4-3)(4+3) + (2-1)(2+1)
= 50 + 49 + 48 + 47 + 46 + 45+...+4+3+2+1
= [(50 - 1) : 1 + 1] * (50+1) : 2 = 1275
vậy A - B = 1275
Ta có \(3x^2+5x-2=0\Rightarrow12x^2+20x-8=0\)
\(\Rightarrow12x^2+20x=8\)
thay vào biểu thức đầu tiên ta được
\(12x^2+20x+1=8+1=9\)
\(B=\left(50^2+48^2+46^2+...+4^2+2^2\right)-\left(49^2+47^2+45^2+...+3^2+1^2\right)\)
\(B=50^2+48^2+46^2+...+4^2+2^2-49^2-47^2-...-3^2-1^2\)
\(B=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(4^2-3^2\right)+\left(2^2-1^2\right)\)
\(B=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(B=50+49+48+47+...+4+3+2+1\)
\(B=1+2+3+...+48+49+50\)
\(B=\dfrac{50-1+1}{2}.\left(1+50\right)\)
\(B=25.51\)
\(B=1275\)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Đặt A :\(A=\left(50^2+48^2+46^2+...+4^2+2^2\right)-\left(49^2+47^2+45^2+...+3^2+1^2\right)\)
\(=50^2+48^2+...+4^2+2^2-49^2-47^2-...-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+....+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=99+95+91+...+3\)
Biểu thức đã được đơn giản hóa và trỡ thành tổng dãy số cách đều 4 đơn vị .
Sô các số hạng là :
\(\frac{99-3}{2}+1=25\) ( số hạng )
\(\Rightarrow A=\frac{25.\left(99+3\right)}{2}=1275\)