Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
Bài 1:
a: \(A=\left|3x+6\right|+\left(2x-4y\right)^2+6>=6\)
Dấu '=' xảy ra khi x=-2 và 2x=4y
=>x=-2 và 4y=-4
=>x=-2 và y=-1
b: \(B=\left|2x-5\right|+\left|7-2x\right|>=\left|2x-5+7-2x\right|=2\)
Dấu '=' xảy ra khi (2x-5)(2x-7)<=0
=>5/2<=x<=7/2
a) \(\frac{3}{4}-\left(\frac{1}{2}:x+\frac{1}{2}\right)=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{3}{4}-\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{15}{20}-\frac{12}{20}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{13}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{10}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{3}{20}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{3}{20}\)
\(\Leftrightarrow x=\frac{1}{2}.\frac{20}{3}=\frac{10}{3}\)
Vậy: \(x=\frac{10}{3}\)
b) \(3x.\left(\frac{1}{2}.x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\\frac{1}{2}x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy: \(x\in\left\{0;2\right\}\)
c) \(\left(4-x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\2x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=\frac{3}{2}\end{cases}}}\)
Vậy: \(x\in\left\{4;\frac{3}{2}\right\}\)
d) \(\frac{4}{-3}=\frac{-12}{x}\)
\(\Leftrightarrow4x=\left(-12\right).\left(-3\right)\)
\(\Leftrightarrow4x=36\)
\(\Leftrightarrow x=9\)
Vậy: \(x=9\)
e) \(\frac{4x}{-3}=\frac{12}{-x}\)
\(\Leftrightarrow4x.\left(-x\right)=12.\left(-3\right)\)
\(\Leftrightarrow-4x^2=-36\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy: \(x\in\left\{3;-3\right\}\)
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
A) 5/4+x=2/3
B) -x-2=5/4
C)4x+1/3=3/2
Đ) 1/3-2/5+3x=3/4
E) 3x+7+2x=4x-3
G) 3x(2x-3)-2x(3x-4)=15
H) x^2-x=0
a) \(x=-\frac{7}{12}\)
b) \(x=-\frac{13}{4}\)
c) \(x=\frac{7}{24}\)
d) \(x=\frac{49}{180}\)
e) \(x=-10\)
g) \(x=15\)
h) \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
a) \(\left|4-x\right|+2x=3\)
\(\Rightarrow\left|4-x\right|=3-2x\)
Nếu \(4-x\ge0\Rightarrow x\ge-4\) thì:
\(4-x=3-2x\)
\(\Rightarrow4-3=-2x+x\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=-1\) ( t/m )
Nếu \(4-x< 0\Rightarrow x< -4\) thì:
\(-\left(4-x\right)=3-2x\)
\(\Rightarrow-4+x=3-2x\)
\(\Rightarrow-4-3=-2x-x\)
\(\Rightarrow-7=-3x\)
\(\Rightarrow x=\frac{7}{3}\) ( loại )
Vậy \(x=-1\)
b) Vì \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\)
nên \(4x\ge0\Rightarrow x\ge0\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\)
\(\Rightarrow x+1+x+2+x+3=4x\)
\(\Rightarrow x=6\)
Vậy \(x=6\)
c) \(\left|2x-1\right|=2\)
\(\Rightarrow2x-1=\pm2\)
+) \(2x-1=2\Rightarrow x=\frac{3}{2}\)
+) \(2x-1=-2\Rightarrow x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{3}{2};\frac{-1}{2}\right\}\)
d) \(\left|3-2x\right|+\left|4y+5\right|=0\)
\(\Rightarrow\left|3-2x\right|=0\) và \(\left|4y+5\right|=0\)
+) \(\left|3-2x\right|=0\Rightarrow3-2x=0\Rightarrow x=\frac{3}{2}\)
+) \(\left|4y+5\right|=0\Rightarrow4y+5=0\Rightarrow y=\frac{-5}{4}\)
Vậy \(x=\frac{3}{2};y=\frac{-5}{4}\)
e) \(x^2+\left|x-1\right|=x^2+2\)
\(\Rightarrow\left|x-1\right|=2\)
Đến đây làm tương tự phần c để tìm x