Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
B1.a/ (x-2)(x^2+2x+2)
b/ (x+1)(x+5)(x+2)
c/ (x+1)(x^2+2x+4)
B2.
1a) x3 - 2x - 4 = 0
<=> (x3 - 4x) + (2x - 4) = 0
<=> x(x2 - 4) + 2(x - 2) = 0
<=> x(x - 2)(x + 2) + 2(x - 2) = 0
<=> (x - 2)(x2 + 2x + 2) = 0
<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)
<=> x = 2
Vậy S = {2}
b) x3 + 8x2 + 17x + 10 = 0
<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0
<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0
<=> (x2 + 3x + 2)(x + 5) = 0
<=> (x2 + x + 2x + 2)(x + 5) = 0
<=> (x + 1)(x + 2)(x + 5) = 0
<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0
<=> x = -1 hoặc x = -2 hoặc x = -5
Vậy S = {-1; -2; -5}
c) x3 + 3x2 + 6x + 4 = 0
<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0
<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0
<=> (x2 + 2x + 4)(x + 2) = 0
<=> x + 2 = 0
<=> x = -2
Vậy S = {-2}
a) \(ĐKXĐ:x\inℝ\)
\(\frac{x^2+2x+3}{x^2-x+1}=0\)
\(\Leftrightarrow x^2+2x+3=0\)
\(\Leftrightarrow\left(x+1\right)^2+2=0\left(ktm\right)\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
b) \(ĐKXĐ:x\ne\pm2\)
\(\frac{x}{x+2}+\frac{4}{x-2}=\frac{4}{x^2-4}\)
\(\Leftrightarrow\frac{x}{x+2}+\frac{4}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x-2\right)+4\left(x+2\right)-4}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x^2-2x+4x+8-4=0\)
\(\Leftrightarrow x^2+2x+4=0\)
\(\Leftrightarrow\left(x+1\right)^2+3=0\left(ktm\right)\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
Bài 2:
a) Thay x=-2 vào phương trình 2x+k=x-1, ta được
2*(-2)+k=-2-1
⇔-4+k=-3
⇔k=-3-(-4)=-3+4=1
Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2
b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được
(2*2+1)*(9*2+2k)-5*(2+2)=40
⇔5*(18+2k)-20=40
⇔5*(18+2k)=40+20
⇔18+2k=12
⇔2k=12-18=-6
⇔k=-3
Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2
c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được
2*(2*1+1)+18=3*(1+2)*(2*1+k)
⇔2*3+18=3*3*(2+k)
⇔24=9*(2+k)
⇔\(2+k=\frac{24}{9}=\frac{8}{3}\)
\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)
Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1
Tham khảo nhé bạn !
Đề bài : ( 2.x - 2 )2 = ( x+ 1 ) 2 + 3. ( x - 2 ) . ( x + 5 )
Giải
Ta có : ( 2.x - 2 )2 = ( x+ 1 ) 2 + 3. ( x - 2 ) . ( x + 5 )
<=> 4.x2 - 8.x + 4 = x2 + 2.x+ 1 + 3. ( x2 + 3.x - 10 )
<=> 4.x2 -8.x + 4 = 4.x 2 + 11.x -29
<=> 19.x = 33
<=> x = 33/19
Vậy x = 33/19
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
a) Ta có: \(2x+5=4\left(x-1\right)-2\left(x-3\right)\)
\(\Leftrightarrow2x+5=4x-4-2x+6\\ \Leftrightarrow2x-4x+2x=-4+6-5\\ \Leftrightarrow0x=-3\)
Điều này là vô lí do VT = 0, VP khác 0. Vậy phương trình vô nghiệm.
b) Ta có \(2x-3=2\left(x-3\right)\)
\(\Leftrightarrow2x-3=2x-6\\ \Leftrightarrow2x-2x=-6+3\\ \Leftrightarrow0x=-3\)
Điều này là vô lí do VT = 0, VP khác 0. Vậy phương trình vô nghiệm.
2x+5=4(x-1)-2(x-3)
\(\Leftrightarrow2x+5=4x-4-2x+6\)
\(\Leftrightarrow2x-4x+2x=-4+6-5\)
\(\Leftrightarrow0x=3\)(vô lí)
\(\Rightarrow\)Phương trình vô nghiệm
b) 2x-3=2(x-3)
\(\Leftrightarrow2x-3=2x-6\)
\(\Leftrightarrow2x-2x=-6+3\)
\(\Leftrightarrow0x=-3\)( vô lí)
Vậy phương trình vô nghiệm