K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

a) Ta có: \(2x+5=4\left(x-1\right)-2\left(x-3\right)\)

\(\Leftrightarrow2x+5=4x-4-2x+6\\ \Leftrightarrow2x-4x+2x=-4+6-5\\ \Leftrightarrow0x=-3\)

Điều này là vô lí do VT = 0, VP khác 0. Vậy phương trình vô nghiệm.

b) Ta có \(2x-3=2\left(x-3\right)\)

\(\Leftrightarrow2x-3=2x-6\\ \Leftrightarrow2x-2x=-6+3\\ \Leftrightarrow0x=-3\)

Điều này là vô lí do VT = 0, VP khác 0. Vậy phương trình vô nghiệm.

4 tháng 2 2021

2x+5=4(x-1)-2(x-3)

\(\Leftrightarrow2x+5=4x-4-2x+6\)

\(\Leftrightarrow2x-4x+2x=-4+6-5\)

\(\Leftrightarrow0x=3\)(vô lí)

\(\Rightarrow\)Phương trình vô nghiệm

b) 2x-3=2(x-3)

\(\Leftrightarrow2x-3=2x-6\)

\(\Leftrightarrow2x-2x=-6+3\)

\(\Leftrightarrow0x=-3\)( vô lí)

Vậy phương trình vô nghiệm

a) \(x^4-2x^3+4x^2-3x+2=0\)

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)

\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)

 Vì (x2 -x )\(\ge0\)với mọi x

\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x

=> Phương trình trên vô nghiệm - đpcm

b) Ta có

x6+x5+x4+x3+x2+x+1=0

Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :

(x−1)(x6+x5+x4+x3+x2+x+1)=0

⇔x7−1=0

⇔x7=1

⇔x=1

(vô lí)

Điều vô lí chứng tỏ phương trình vô nghiệm.

6 tháng 3 2020

B1.a/ (x-2)(x^2+2x+2)

     b/ (x+1)(x+5)(x+2)

     c/ (x+1)(x^2+2x+4)

B2.

6 tháng 3 2020

1a) x3 - 2x - 4 = 0

<=> (x3 - 4x) + (2x - 4) = 0

<=> x(x2 - 4) + 2(x - 2) = 0

<=> x(x - 2)(x + 2) + 2(x - 2) = 0

<=> (x - 2)(x2 + 2x + 2) = 0

<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)

<=> x = 2

Vậy S = {2}

b) x3 + 8x2 + 17x + 10 = 0

<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0

<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0

<=> (x2 + 3x + 2)(x + 5) = 0

<=> (x2 + x + 2x + 2)(x + 5) = 0

<=> (x + 1)(x + 2)(x + 5) = 0

<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0

<=> x = -1 hoặc x = -2 hoặc x = -5

Vậy S = {-1; -2; -5}

c) x3 + 3x2 + 6x + 4 = 0

<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0

<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0

<=> (x2 + 2x + 4)(x + 2) = 0

<=> x + 2 = 0

<=> x = -2

Vậy S = {-2}

6 tháng 3 2020

a) \(ĐKXĐ:x\inℝ\)

\(\frac{x^2+2x+3}{x^2-x+1}=0\)

\(\Leftrightarrow x^2+2x+3=0\)

\(\Leftrightarrow\left(x+1\right)^2+2=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

b) \(ĐKXĐ:x\ne\pm2\)

 \(\frac{x}{x+2}+\frac{4}{x-2}=\frac{4}{x^2-4}\)

\(\Leftrightarrow\frac{x}{x+2}+\frac{4}{x-2}-\frac{4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x-2\right)+4\left(x+2\right)-4}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2-2x+4x+8-4=0\)

\(\Leftrightarrow x^2+2x+4=0\)

\(\Leftrightarrow\left(x+1\right)^2+3=0\left(ktm\right)\)

\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

Bài 1: Giải các phương trình sau: Câu 1. a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12 e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5 g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x 2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x...
Đọc tiếp

Bài 1: Giải các phương trình sau:

Câu 1.

a) 3x – 2 = 2x – 3 b) 3 – 4y + 24 + 6y = y + 27 + 3y

c) 7 – 2x = 22 – 3x d) 8x – 3 = 5x + 12

e) x – 12 + 4x = 25 + 2x – 1 f) x + 2x + 3x – 19 = 3x + 5

g) 11 + 8x – 3 = 5x – 3 + x h) 4 – 2x + 15 = 9x + 4 – 2x

2. a) 5 – (x – 6) = 4(3 – 2x) b) 2x(x + 2)2 – 8x2 = 2(x – 2)(x2 + 2x + 4)

c) 7 – (2x + 4) = – (x + 4) d) (x – 2)3 + (3x – 1)(3x + 1) = (x + 1)3

e) (x + 1)(2x – 3) = (2x – 1)(x + 5) f) (x – 1)3 – x(x + 1)2 = 5x(2 – x) – 11(x + 2)

g) (x – 1) – (2x – 1) = 9 – x h) (x – 3)(x + 4) – 2(3x – 2) = (x – 4)2

i) x(x + 3)2 – 3x = (x + 2)3 + 1 j) (x + 1)(x2 – x + 1) – 2x = x(x + 1)(x – 1)

3. a) 1,2 – (x – 0,8) = –2(0,9 + x) b) 3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)

c) 2,3x – 2(0,7 + 2x) = 3,6 – 1,7x d) 0,1 – 2(0,5t – 0,1) = 2(t – 2,5) – 0,7

e) 3 + 2,25x +2,6 = 2x + 5 + 0,4x f) 5x + 3,48 – 2,35x = 5,38 – 2,9x + 10,42

4.a) (5x-2)/3=(5-3x)/2 b)(10x+3)/12=1+((6+8x)/9)

c)2(x+3/5)=5-(13/5+x) d)7/8x-5(x-9)=(20x+1,5)/6

e)(7x-1)/6+2x=(16-x)/5 f)4(0,5-1,5x)=-(5x-6)/3

g)(3x+2)/2-(3x+1)/6=5/3+2x h)(x+4)/5-(x+4)=x/3-(x-2)/2

i) (4x+3)/5-(6x-2)/7=(5x+4)/3+3 k)(5x+2)/6-(8x-1)/3=(4x+2)/5-5

m)(2x-1)/5-(x-2)/3=(x+7)/15 n)1/4(x+3)=3-1/2(x+1)-1/3(x+2)

Bài 2 Tìm giá trị của k sao cho:

a. Phương trình: 2x + k = x – 1 có nghiệm x = – 2.

b. Phương trình: (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2

c. Phương trình: 2(2x + 1) + 18 = 3(x + 2)(2x + k) có nghiệm x = 1

1

Bài 2:

a) Thay x=-2 vào phương trình 2x+k=x-1, ta được

2*(-2)+k=-2-1

⇔-4+k=-3

⇔k=-3-(-4)=-3+4=1

Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2

b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được

(2*2+1)*(9*2+2k)-5*(2+2)=40

⇔5*(18+2k)-20=40

⇔5*(18+2k)=40+20

⇔18+2k=12

⇔2k=12-18=-6

⇔k=-3

Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2

c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được

2*(2*1+1)+18=3*(1+2)*(2*1+k)

⇔2*3+18=3*3*(2+k)

⇔24=9*(2+k)

\(2+k=\frac{24}{9}=\frac{8}{3}\)

\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)

Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1

30 tháng 3 2020

Tham khảo nhé bạn ! 

Đề bài : ( 2.x - 2 )2 = ( x+ 1 ) 2 + 3. ( x - 2 ) . ( x + 5 ) 

Giải

Ta có : ( 2.x - 2 )2 = ( x+ 1 ) 2 + 3. ( x - 2 ) . ( x + 5 )

 <=> 4.x2 - 8.x + 4 =   x2 + 2.x+ 1 + 3. ( x2 + 3.x - 10 ) 

<=> 4.x2 -8.x + 4   = 4.x + 11.x -29 

<=>  19.x                 = 33 

<=>  x                       = 33/19 

Vậy x = 33/19

 

30 tháng 3 2020

mũ 3 mà

22 tháng 1 2020

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)