K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

tớ chịu thôi SORRY CẬU RẤT NHIỀU

4 tháng 5 2021

A=2015/2016+2016/2017+2017/2018>2015/2018+2016/2018+2017/2018

=6048/2018>1

B=2015+2016+2017/2016+2017+2018=6048/6051<1

=>A>B

25 tháng 4 2016

Có: B = 2015 + 2016 + 2017/2016 + 2017 + 2018

       B= 2015 / (2015 + 2016+2017)  + 2016/(2016+2017+2018) + 2017/(2016 + 2017 + 2018)

vì     2015/2016 > 2015/(2016 + 2017+2018)  ; 2016/2017>2016/(2016+2017+2018) ; 2017/2018 > 2017/(2016+2017+2018)

=> A>B

13 tháng 4 2019

có ai là ARMY ko nếu là ARMY thì mọi người cày view chưa

25 tháng 4 2018

A<B(2015/2016<2015;2016/2017<2016;2017/2018<2017)

Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)


\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Hay \(A>B\)

17 tháng 3 2018

Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow P>Q\)

Vậy P > Q

18 tháng 5 2019

Ta có:2015/2016>2015/2016+2017+2018

2016/2017>2016/2016+2017+2018

2017/2018>2017/2016+2017+2018-Mình áp dụng so sánh phân số cùng tử đấy.

Suy ra2015/2016+2016/2017+2017/2018>(2015+2016+2017)/(2016+2017+2018)=B

4 tháng 5 2018

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)

\(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Ta có:

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

Cộng vế theo vế, ta có:

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Vậy A >  B

28 tháng 5 2021
Bạn có nhầm không, tớ thấy cả hai đều giống nhau mà, Hai cái bằng nhau
15 tháng 6 2021

Ta có : \(A=\left(\left(-2015\right)^{2016}.-2016^{2017}+\left(-2016\right)^{2017}.-2015^{2016}\right).\left(-2017\right)^{2018}\)

\(=\left(2015^{2016}.-2016^{2017}-2016^{2017}.-2015^{2016}\right).2017^{2018}\)

\(=\left(2015^{2016}-2015^{2016}\right).2017^{2018}.\left(-2016^{2017}\right)\)

\(=0.2017^{2018}.\left(-2016^{2017}\right)=0\)

Giải:

\(A=\left[\left(-2015\right)^{2016}.\left(-2016^{2017}\right)+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\) 

\(A=\left[2015^{2016}.\left(-2016\right)^{2017}+\left(-2016\right)^{2017}.\left(-2015^{2016}\right)\right].\left(-2017\right)^{2018}\) 

\(A=\left[2015^{2016}+\left(-2015^{2016}\right)\right].\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\) 

\(A=0.\left(-2016\right)^{2017}.\left(-2017\right)^{2018}\) 

\(A=0\)